Dirk Brehmer
GPC Biotech
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dirk Brehmer.
Molecular & Cellular Proteomics | 2004
Dirk Brehmer; Klaus Godl; Birgit Zech; Josef Wissing; Henrik Daub
Bisindolylmaleimide compounds such as GF109203X are potent inhibitors of protein kinase C (PKC) activity. Although bisindolylmaleimides are not entirely selective for PKC and are known to inhibit a few other protein kinases, these reagents have been extensively used to study the functional roles of PKC family enzymes in cellular signal transduction for more than a decade. Here, we establish a proteomics approach to gain further insights into the cellular effects of this compound class. Functional immobilization of suitable bisindolylmaleimide analogues in combination with the specific purification of cellular binding proteins by affinity chromatography led to the identification of several known and previously unknown enzyme targets. Subsequent in vitro binding and activity assays confirmed the protein kinases Ste20-related kinase and cyclin-dependent kinase 2 (CDK2) and the non-protein kinases adenosine kinase and quinone reductase type 2 as novel targets of bisindolylmaleimide inhibitors. As observed specifically for CDK2, minor chemical variation of the ligand by immobilizing the closely related bisindolylmaleimides III, VIII, and X dramatically affected target binding. These observed changes in affinity correlated with both the measured IC50 values for in vitro CDK2 inhibition and results from molecular docking into the CDK2 crystal structure. Moreover, the conditions for affinity purification could be adapted in a way that immobilized bisindolylmaleimide III selectively interacted with either PKCα or ribosomal S6 protein kinase 1 only after activation of these kinases. Thus, we have established an efficient technique for the rapid identification of cellular bisindolylmaleimide targets and further demonstrate the comparative selectivity profiling of closely related kinase inhibitors within a cellular proteome.
Cancer Research | 2005
Klaus Godl; Oliver J. Gruss; Jan Eickhoff; Josef Wissing; Stephanie Blencke; Martina Weber; Heidrun Degen; Dirk Brehmer; Laszlo Orfi; Zoltán Horváth; György Kéri; Stefan Müller; Matt Cotten; Axel Ullrich; Henrik Daub
Knowledge about molecular drug action is critical for the development of protein kinase inhibitors for cancer therapy. Here, we establish a chemical proteomic approach to profile the anticancer drug SU6668, which was originally designed as a selective inhibitor of receptor tyrosine kinases involved in tumor vascularization. By employing immobilized SU6668 for the affinity capture of cellular drug targets in combination with mass spectrometry, we identified previously unknown targets of SU6668 including Aurora kinases and TANK-binding kinase 1. Importantly, a cell cycle block induced by SU6668 could be attributed to inhibition of Aurora kinase activity. Moreover, SU6668 potently suppressed antiviral and inflammatory responses by interfering with TANK-binding kinase 1-mediated signal transmission. These results show the potential of chemical proteomics to provide rationales for the development of potent kinase inhibitors, which combine rather unexpected biological modes of action by simultaneously targeting defined sets of both serine/threonine and tyrosine kinases involved in cancer progression.
Molecular & Cellular Proteomics | 2004
Josef Wissing; Klaus Godl; Dirk Brehmer; Stephanie Blencke; Martina Weber; Peter Habenberger; Matthias Stein-Gerlach; Andrea Missio; Matt Cotten; Stefan Müller; Henrik Daub
Small molecule inhibitors belonging to the pyrido[2,3-d]pyrimidine class of compounds were developed as antagonists of protein tyrosine kinases implicated in cancer progression. Derivatives from this compound class are effective against most of the imatinib mesylate-resistant BCR-ABL mutants isolated from advanced chronic myeloid leukemia patients. Here, we established an efficient proteomics method employing an immobilized pyrido[2,3-d]pyrimidine ligand as an affinity probe and identified more than 30 human protein kinases affected by this class of compounds. Remarkably, in vitro kinase assays revealed that the serine/threonine kinases Rip-like interacting caspase-like apoptosis-regulatory protein kinase (RICK) and p38α were among the most potently inhibited kinase targets. Thus, pyrido[2,3-d]pyrimidines did not discriminate between tyrosine and serine/threonine kinases. Instead, we found that these inhibitors are quite selective for protein kinases possessing a conserved small amino acid residue such as threonine at a critical site of the ATP binding pocket. We further demonstrated inhibition of both p38 and RICK kinase activities in intact cells upon pyrido[2,3-d]pyrimidine inhibitor treatment. Moreover, the established functions of these two kinases as signal transducers of inflammatory responses could be correlated with a potent in vivo inhibition of cytokine production by a pyrido[2,3-d]pyrimidine compound. Thus, our data demonstrate the utility of proteomic methods employing immobilized kinase inhibitors for identifying new targets linked to previously unrecognized therapeutic applications.
Assay and Drug Development Technologies | 2004
Henrik Daub; Klaus Godl; Dirk Brehmer; Bert Klebl; Gerhard Müller
Small-molecule inhibitors of protein kinases constitute a novel class of drugs for therapeutic intervention in a variety of human diseases. Most of these agents target the relatively conserved ATP-binding site of protein kinases and have only been tested against a rather small subset of all human protein kinases. Therefore, the selectivity of protein kinase inhibitors has remained a widely underestimated, but highly important issue in drug development programs. In this review, we focus on the recent advancement of chemical proteomic methods to evaluate drug selectivity in an unbiased, comprehensive way. Efficient affinity purification procedures using immobilized kinase inhibitors combined with the sensitivity of mass spectrometry detection permit the mapping of drug targets on a proteome-wide scale. Data from this type of assessment can be used to set up tailor-made selectivity panels, which guide compound development in the context of the most relevant off-targets during lead optimization. In cases in which identified alternative targets are of validated clinical relevance, chemical proteomics provides the opportunity to repeatedly exploit a once established kinase inhibitor principle for additional target kinases and can thereby dramatically shorten the time toward highly selective, preclinical candidates. Moreover, the identification of alternative targets for preclinical or clinical drugs can provide new insights into their cellular modes of action, which might help to define those disease settings in which the most beneficial therapeutic effect is likely to occur.
ACS Medicinal Chemistry Letters | 2015
Christopher N. Johnson; Valerio Berdini; Lijs Beke; Pascal Bonnet; Dirk Brehmer; Joseph E. Coyle; Phillip J. Day; Martyn Frederickson; Eddy Jean Edgard Freyne; Ron Gilissen; Christopher Charles Frederick Hamlett; Steven Howard; Lieven Meerpoel; Rachel McMenamin; Sahil Patel; David C. Rees; Andrew Sharff; Francois Maria Sommen; Tongfei Wu; Joannes Theodorus Maria Linders
Fragment-based drug design was successfully applied to maternal embryonic leucine zipper kinase (MELK). A low affinity (160 μM) fragment hit was identified, which bound to the hinge region with an atypical binding mode, and this was optimized using structure-based design into a low-nanomolar and cell-penetrant inhibitor, with a good selectivity profile, suitable for use as a chemical probe for elucidation of MELK biology.
ACS Medicinal Chemistry Letters | 2015
Christopher Norbert Johnson; Christophe Denis Adelinet; Valerio Berdini; Lijs Beke; Pascal Bonnet; Dirk Brehmer; Frederick Calo; Joseph E. Coyle; Phillip J. Day; Martyn Frederickson; Eddy Jean Edgard Freyne; Ron Gilissen; Christopher Charles Frederick Hamlett; Steven Howard; Lieven Meerpoel; Laurence Anne Mevellec; Rachel McMenamin; Elisabeth Thérèse Jeanne Pasquier; Sahil Patel; David C. Rees; Joannes Theodorus Maria Linders
A novel Type II kinase inhibitor chemotype has been identified for maternal embryonic leucine zipper kinase (MELK) using structure-based ligand design. The strategy involved structural characterization of an induced DFG-out pocket by protein-ligand X-ray crystallography and incorporation of a slender linkage capable of bypassing a large gate-keeper residue, thus enabling design of molecules accessing both hinge and induced pocket regions. Optimization of an initial hit led to the identification of a low-nanomolar, cell-penetrant Type II inhibitor suitable for use as a chemical probe for MELK.
Cancer Research | 2017
Dirk Brehmer; Tongfei Wu; Geert Mannens; Lijs Beke; Petra Vinken; Dana Gaffney; Weimei Sun; Vineet Pande; Jan-Willem Thuring; Hillary Millar; Italo Poggesi; Ivan Somers; An Boeckx; Marc Parade; Erika van Heerde; Thomas Nys; Carol Yanovich; Barbara Herkert; Tinne Verhulst; Marc Du Jardin; Lieven Meerpoel; Christopher Moy; Gaston Diels; Marcel Viellevoye; Wim Schepens; Alain Philippe Poncelet; Joannes Theodorus Maria Linders; Edward Charles Lawson; James P. Edwards; Dushen Chetty
PRMT5 is a type II methyltransferase that specifically adds methyl groups to arginine as a long-lasting post-translational modification. The PRMT5/MEP50 complex regulates a plethora of cellular processes, such as epigenetics and splicing, which are notable events involved in tumorigenesis. Although not frequently mutated or amplified in tumors, elevated PRMT5 protein levels in lung and hematologic cancers are correlated with poorer survival. The PRMT5 inhibitor JNJ-64619178 has been selected as a clinical candidate based on its high selectivity and potency (subnanomolar range) under different in vitro and cellular conditions, paired with favorable pharmacokinetics and safety properties. JNJ-64619178 binds into the SAM binding pocket and reaches the substrate binding pocket to inhibit PRMT5/MEP50 function in a time-dependent manner. Broad cell line panel profiling of JNJ-64619178 revealed a wide range of sensitivity, which is indicative of a genomic dependency instead of a general cytotoxic on-target consequence of PRMT5 inhibition. Further investigations indicate a synthetic lethal correlation between PRMT5 inhibition and key cancer driver pathways. JNJ-64619178, dosed orally (10 mg/kg, every day), showed selective and efficient blockage of the methylation of SMD1/3 proteins, which are crucial components of the spliceosome and substrates of PRMT5/MEP50. JNJ-64619178 also demonstrated tumor regression in a biomarker-driven human small cell lung cancer xenograft model (NCI-H1048) and prolonged tumor growth inhibition after dosing cessation. In rodent and nonrodent toxicology studies, a tolerated dose of JNJ-64619178 has been identified, with the observed toxicity consistent with on-target activity. In summary, JNJ-64619178 has a favorable preclinical package that supports clinical testing in patients diagnosed with lung cancer and hematologic malignancies. Citation Format: Dirk Brehmer, Tongfei Wu, Geert Mannens, Lijs Beke, Petra Vinken, Dana Gaffney, Weimei Sun, Vineet Pande, Jan-Willem Thuring, Hillary Millar, Italo Poggesi, Ivan Somers, An Boeckx, Marc Parade, Erika van Heerde, Thomas Nys, Carol Yanovich, Barbara Herkert, Tinne Verhulst, Marc Du Jardin, Lieven Meerpoel, Christopher Moy, Gaston Diels, Marcel Viellevoye, Wim Schepens, Alain Poncelet, Joannes T. Linders, Edward C. Lawson, James P. Edwards, Dushen Chetty, Sylvie Laquerre, Matthew V. Lorenzi. A novel PRMT5 inhibitor with potent in vitro and in vivo activity in preclinical lung cancer models [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr DDT02-04. doi:10.1158/1538-7445.AM2017-DDT02-04
Cancer Research | 2005
Dirk Brehmer; Zoltán Greff; Klaus Godl; Stephanie Blencke; Alexander Kurtenbach; Martina Weber; Stefan Müller; Bert Klebl; Matt Cotten; György Kéri; Josef Wissing; Henrik Daub
Cancer Research | 2008
Janine Arts; Martin John Page; Annemie Francine Valckx; Christine Blattner; R. Kulikov; Wim Floren; Luc Van Nuffel; Lut Janssen; Peter H. King; Stefan Masure; Karine Smans; Peter Verhasselt; Hinrich Goehlmann; Yannick Aimé Eddy Ligny; Delphine Yvonne Raymonde Lardeau; Imre Csoka; Luc Andries; Dirk Brehmer; Eddy Jean Edgard Freyne; Eugen Leo; Michel Janicot; Christophe Meyer; Jean Fernand Armand Lacrampe; Bruno Schoentjes
Cancer Research | 2018
Tongfei Wu; Hillary Millar; Dana Gaffney; Lijs Beke; Geert Mannens; Petra Vinken; Ivan Sommers; Jan-Willem Thuring; Weimei Sun; Christopher Moy; Vineet Pande; Junguo Zhou; Nahor Haddish-Berhane; Mark E. Salvati; Sylvie Laquerre; Matthew V. Lorenzi; Dirk Brehmer