Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dirk Daelemans is active.

Publication


Featured researches published by Dirk Daelemans.


Nature Protocols | 2008

Tetrazolium-based colorimetric assay for the detection of HIV replication inhibitors: revisited 20 years later

Christophe Pannecouque; Dirk Daelemans; Erik De Clercq

Since its first description 20 years ago, the tetrazolium-based colorimetric (MTT) assay using MT-4 cells for the detection of anti-HIV compounds has been widely used. This method, which remains popular, provides more information than more recently developed methods and, therefore, represents a useful methodology on its own or in combination with other screening systems. The replication of HIV in MT-4 cells is usually monitored 5 d after infection; therefore, this protocol can be divided into three steps: the infection (at day 0), an incubation period (5 d) and the evaluation (at day 5). The long-standing and intensive use of the MTT method has taught users of the limitations and, equally importantly, the unexpected advantages of the MT-4/MTT assay. The use of this method can be extended to antiviral testing of compounds against other cyto-destructive viruses.


Journal of Clinical Investigation | 2007

Deletion of the transient receptor potential cation channel TRPV4 impairs murine bladder voiding

Thomas Gevaert; Joris Vriens; Andrei Segal; Wouter Everaerts; Tania Roskams; Karel Talavera; Grzegorz Owsianik; Wolfgang Liedtke; Dirk Daelemans; Ilse Dewachter; Fred Van Leuven; Thomas Voets; Dirk De Ridder; Bernd Nilius

Here we provide evidence for a critical role of the transient receptor potential cation channel, subfamily V, member 4 (TRPV4) in normal bladder function. Immunofluorescence demonstrated TRPV4 expression in mouse and rat urothelium and vascular endothelium, but not in other cell types of the bladder. Intracellular Ca2+ measurements on urothelial cells isolated from mice revealed a TRPV4-dependent response to the selective TRPV4 agonist 4alpha-phorbol 12,13-didecanoate and to hypotonic cell swelling. Behavioral studies demonstrated that TRPV4-/- mice manifest an incontinent phenotype but show normal exploratory activity and anxiety-related behavior. Cystometric experiments revealed that TRPV4-/- mice exhibit a lower frequency of voiding contractions as well as a higher frequency of nonvoiding contractions. Additionally, the amplitude of the spontaneous contractions in explanted bladder strips from TRPV4-/- mice was significantly reduced. Finally, a decreased intravesical stretch-evoked ATP release was found in isolated whole bladders from TRPV4-/- mice. These data demonstrate a previously unrecognized role for TRPV4 in voiding behavior, raising the possibility that TRPV4 plays a critical role in urothelium-mediated transduction of intravesical mechanical pressure.


Blood | 2012

Selective inhibitors of nuclear export show that CRM1/XPO1 is a target in chronic lymphocytic leukemia

Rosa Lapalombella; Qingxiang Sun; Katie Williams; Larissa Tangeman; Shruti Jha; Yiming Zhong; Virginia M. Goettl; Emilia Mahoney; Caroline Berglund; Sneha V. Gupta; Alicia Farmer; Rajeswaran Mani; Amy J. Johnson; David M. Lucas; Xiaokui Mo; Dirk Daelemans; Vincent Sandanayaka; Sharon Shechter; Dilara McCauley; Sharon Shacham; Michael Kauffman; Yuh Min Chook; John C. Byrd

The nuclear export protein XPO1 is overexpressed in cancer, leading to the cytoplasmic mislocalization of multiple tumor suppressor proteins. Existing XPO1-targeting agents lack selectivity and have been associated with significant toxicity. Small molecule selective inhibitors of nuclear export (SINEs) were designed that specifically inhibit XPO1. Genetic experiments and X-ray structures demonstrate that SINE covalently bind to a cysteine residue in the cargo-binding groove of XPO1, thereby inhibiting nuclear export of cargo proteins. The clinical relevance of SINEs was explored in chronic lymphocytic leukemia (CLL), a disease associated with recurrent XPO1 mutations. Evidence is presented that SINEs can restore normal regulation to the majority of the dysregulated pathways in CLL both in vitro and in vivo and induce apoptosis of CLL cells with a favorable therapeutic index, with enhanced killing of genomically high-risk CLL cells that are typically unresponsive to traditional therapies. More importantly, SINE slows disease progression, and improves overall survival in the Eμ-TCL1-SCID mouse model of CLL with minimal weight loss or other toxicities. Together, these findings demonstrate that XPO1 is a valid target in CLL with minimal effects on normal cells and provide a basis for the development of SINEs in CLL and related hematologic malignancies.


Proceedings of the National Academy of Sciences of the United States of America | 2002

A synthetic HIV-1 Rev inhibitor interfering with the CRM1-mediated nuclear export

Dirk Daelemans; Elena Afonina; Jakob Nilsson; Gudrun Werner; Jørgen Kjems; Erik De Clercq; George N. Pavlakis; Anne-Mieke Vandamme

The HIV-1 Rev protein is an essential regulator of the HIV-1 mRNA expression that promotes the export of unspliced and partially spliced mRNA. The export receptor for the leucine-rich nuclear export signal (NES) of Rev has recently been recognized as CRM1. We identified a low molecular weight compound PKF050-638 as an inhibitor of HIV-1 Rev. This drug inhibits in a dose-dependent fashion Rev-dependent mRNA expression in a cellular assay for Rev function. We show that PKF050-638 is an inhibitor of the CRM1-mediated Rev nuclear export. By using a quantitative in vitro CRM1-NES cargo-binding assay, we could demonstrate that PKF050-638 disrupts CRM1-NES interaction. This mode of action is confirmed in cell culture because the drug reversibly interferes with the colocalization of CRM1 and Rev in the nucleolus of the cell. In addition, we prove that the inhibition is through direct interaction of the compound with Cys-539 of CRM1. These effects are similar to those of the known CRM1 inhibitor leptomycin B and suggest that the inhibitory effect of the compound is caused by binding to CRM1 at a similar site. The compound displayed strict structural requirements for its activity, as its enantiomer was inactive in all assays tested. These results show that we identified a drug that interferes with the CRM1-mediated nuclear export of Rev through inhibition of the CRM1-NES complex formation. The reversibility of its binding to CRM1 and its availability through chemical synthesis could make it useful for studying CRM1-mediated export pathways.


Journal of Virology | 2007

Pradimicin A, a Carbohydrate-Binding Nonpeptidic Lead Compound for Treatment of Infections with Viruses with Highly Glycosylated Envelopes, Such as Human Immunodeficiency Virus

Jan Balzarini; Kristel Van Laethem; Dirk Daelemans; Sigrid Hatse; Antonella Bugatti; Marco Rusnati; Yasuhiro Igarashi; Toshikazu Oki; Dominique Schols

ABSTRACT Pradimicin A (PRM-A), an antifungal nonpeptidic benzonaphtacenequinone antibiotic, is a low-molecular-weight (molecular weight, 838) carbohydrate binding agent (CBA) endowed with a selective inhibitory activity against human immunodeficiency virus (HIV). It invariably inhibits representative virus strains of a variety of HIV-1 clades with X4 and R5 tropisms at nontoxic concentrations. Time-of-addition studies revealed that PRM-A acts as a true virus entry inhibitor. PRM-A specifically interacts with HIV-1 gp120 and efficiently prevents virus transmission in cocultures of HUT-78/HIV-1 and Sup T1 cells. Upon prolonged exposure of HIV-1-infected CEM cell cultures, PRM-A drug pressure selects for mutant HIV-1 strains containing N-glycosylation site deletions in gp120 but not gp41. A relatively long exposure time to PRM-A is required before drug-resistant virus strains emerge. PRM-A has a high genetic barrier, since more than five N-glycosylation site deletions in gp120 are required to afford moderate drug resistance. Such mutated virus strains keep full sensitivity to the other known clinically used anti-HIV drugs. PRM-A represents the first prototype compound of a nonpeptidic CBA lead and, together with peptide-based lectins, belongs to a conceptually novel type of potential therapeutics for which drug pressure results in the selection of glycan deletions in the HIV gp120 envelope.


Journal of Medicinal Chemistry | 2010

A 1,8-naphthyridone derivative targets the HIV-1 Tat-mediated transcription and potently inhibits the HIV-1 replication.

Serena Massari; Dirk Daelemans; Maria Letizia Barreca; Anna Knezevich; Stefano Sabatini; Violetta Cecchetti; Alessandro Marcello; Christophe Pannecouque; Oriana Tabarrini

The emergence of multidrug resistant HIV-1 strains and the inability of the HAART to eradicate HIV-1 virus from infected patients demand new drugs able to interfere with an alternative step of the replicative cycle. The naphthyridone 3 (HM13N), described in the present study, is a promising anti-HIV agent due to its ability to inhibit the HIV-1 Tat-mediated transcription and the potent antiviral activity observed in acutely, chronically, and latently infected cells. The absence of any tendency to select for resistance mutations in vitro adds to the potential clinical value of this type of compounds, especially as these compounds are drug-like and obey the Lipinski rules.


Nature Protocols | 2011

A time-of–drug addition approach to target identification of antiviral compounds

Dirk Daelemans; Rudi Pauwels; Erik De Clercq; Christophe Pannecouque

Insight into the mode of action of newly discovered antiviral agents is now almost a prerequisite for clinical development. This protocol describes a method that provides information on the target of inhibitors of the human immunodeficiency virus (HIV); it can also be adapted to other viruses. The results from this experiment are available within 2 d. This time-based approach determines how long the addition of a compound can be postponed before losing its antiviral activity in cell culture. The target of an antiviral compound can be identified by comparing its relative position in the time scale to that of reference drugs. Therefore, it is more precise than, for example, in the case of HIV, a determination of pre- or postintegrational mode of action, and combines in one routine different assays for studying mechanisms of action.


Molecular and Cellular Biology | 2005

Kinetic and Molecular Analysis of Nuclear Export Factor CRM1 Association with Its Cargo In Vivo

Dirk Daelemans; Sylvain V. Costes; Stephen J. Lockett; George N. Pavlakis

ABSTRACT The nucleocytoplasmic transport receptor CRM1 mediates the export of macromolecules from the nucleus to the cytoplasm by forming a ternary complex with a cargo molecule and RanGTP. The in vivo mechanism of CRM1 export complex formation and its mobility throughout the nucleus have not been fully elucidated. More information is required to fully understand complex formation and the dynamics of CRM1-cargo-RanGTP complexes in space and time. We demonstrate true molecular interaction of CRM1 with its Rev cargo in living cells by using fluorescence resonance energy transfer (FRET). Interestingly, we found that the inhibitory effect of leptomycin B on this CRM1-cargo interaction is Ran dependent. Using fluorescence recovery after photobleaching (FRAP), we show that CRM1 moves at rates similar to that of free green fluorescent protein in the nucleoplasm. A slower mobility was detected on the nuclear membrane, consistent with known CRM1 interactions with nuclear pores. Based on these data, we propose an in vivo model in which CRM1 roams through the nucleus in search of high-affinity binding sites. CRM1 is able to bind Rev cargo in the nucleolus, and upon RanGTP binding a functional export complex is produced that is exported to the cytoplasm.


Journal of Biological Chemistry | 2010

An intrabody based on a llama single-domain antibody targeting the N-terminal alpha-helical multimerization domain of HIV-1 REV prevents viral production

Thomas Vercruysse; Els Pardon; Els Vanstreels; Jan Steyaert; Dirk Daelemans

The human immunodeficiency virus, type 1 (HIV-1)-encoded Rev protein is essential for the expression of late viral mRNAs. Rev forms a large organized multimeric protein-protein complex on the Rev response element of these viral mRNA species and transports them from the nucleus to the cytoplasm, exploiting the CRM1-mediated cellular machinery. Here we report the selection of a nanobody, derived from a llama heavy-chain only antibody, that efficiently blocks the assembly of Rev multimers. The nanobody inhibits HIV-1 replication in cells and specifically suppresses the Rev-dependent expression of partially spliced and unspliced HIV-1 RNA. In HIV-susceptible cells, this nanobody thus has potential as an effective anti-HIV agent using genetic immunization strategies. Its binding site was mapped to Rev residues Lys-20 and Tyr-23 located in the N-terminal α-helical multimerization domain. In the presence of this nanobody, we observed an accumulation of dimeric Rev species, supporting a head-to-head/tail-to-tail molecular model for Rev assembly. The results indicate that the oligomeric assembly of Rev follows an ordered stepwise process and identify a new epitope within Rev that could guide strategies for the development of novel HIV inhibitors.


American Journal of Respiratory Cell and Molecular Biology | 2013

Hemozoin Induces Lung Inflammation and Correlates with Malaria-Associated Acute Respiratory Distress Syndrome

Katrien Deroost; Ariane Tyberghein; Natacha Lays; Sam Noppen; Evelin Schwarzer; Els Vanstreels; Mina Komuta; Mauro Prato; Jing-wen Lin; Ana Pamplona; Chris J. Janse; Paolo Arese; Tania Roskams; Dirk Daelemans; Ghislain Opdenakker; Philippe E. Van den Steen

Malaria-associated acute respiratory distress syndrome (MA-ARDS) is a deadly complication of malaria, and its pathophysiology is insufficiently understood. Both in humans and in murine models, MA-ARDS is characterized by marked pulmonary inflammation. We investigated the role of hemozoin in MA-ARDS in C57Bl/6 mice infected with Plasmodium berghei NK65, P. berghei ANKA, and P. chabaudi AS. By quantifying hemozoin in the lungs and measuring the disease parameters of MA-ARDS, we demonstrated a highly significant correlation between pulmonary hemozoin concentrations, lung weights, and alveolar edema. Histological analysis of the lungs demonstrated that hemozoin is localized in phagocytes and infected erythrocytes, and only occasionally in granulocytes. Species-specific differences in hemozoin production, as measured among individual schizonts, were associated with variations in pulmonary pathogenicity. Furthermore, both pulmonary hemozoin and lung pathology were correlated with the number of infiltrating inflammatory cells, an increased pulmonary expression of cytokines, chemokines, and enzymes, and concentrations of alveolar vascular endothelial growth factor. The causal relationship between hemozoin and inflammation was investigated by injecting P. falciparum-derived hemozoin intravenously into malaria-free mice. Hemozoin potently induced the pulmonary expression of proinflammatory chemokines (interferon-γ inducible protein-10/CXC-chemokine ligand (CXCL)10, monocyte chemotactic protein-1/CC-chemokine ligand 2, and keratinocyte-derived chemokine/CXCL1), cytokines (IL-1β, IL-6, IL-10, TNF, and transforming growth factor-β), and other inflammatory mediators (inducible nitric oxide synthase, heme oxygenase-1, nicotinamide adenine dinucleotide phosphate- oxidase-2, and intercellular adhesion molecule-1). Thus, hemozoin correlates with MA-ARDS and induces pulmonary inflammation.

Collaboration


Dive into the Dirk Daelemans's collaboration.

Top Co-Authors

Avatar

Christophe Pannecouque

Rega Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Erik De Clercq

Rega Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Els Vanstreels

Rega Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas Vercruysse

Rega Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne-Mieke Vandamme

Rega Institute for Medical Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge