Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dirk Gillespie is active.

Publication


Featured researches published by Dirk Gillespie.


Journal of Physics: Condensed Matter | 2002

Coupling Poisson-Nernst-Planck and density functional theory to calculate ion flux

Dirk Gillespie; Wolfgang Nonner; Robert S. Eisenberg

Ion transport between two baths of fixed ionic concentrations and applied electrostatic (ES) potential is analysed using a one-dimensional drift-diffusion (Poisson–Nernst–Planck, PNP) transport system designed to model biological ion channels. The ions are described as charged, hard spheres with excess chemical potentials computed from equilibrium density functional theory (DFT). The method of Rosenfeld (Rosenfeld Y 1993 J. Chem. Phys. 98 8126) is generalized to calculate the ES excess chemical potential in channels. A numerical algorithm for solving the set of integral–differential PNP/DFT equations is described and used to calculate flux through a calcium-selective ion channel.


Journal of the American Chemical Society | 2009

Tuning transport properties of nanofluidic devices with local charge inversion.

Yan He; Dirk Gillespie; Dezsö Boda; Ivan Vlassiouk; Robert S. Eisenberg; Zuzanna Siwy

Nanotubes can selectively conduct ions across membranes to make ionic devices with transport characteristics similar to biological ion channels and semiconductor electron devices. Depending on the surface charge profile of the nanopore, ohmic resistors, rectifiers, and diodes can be made. Here we show that a uniformly charged conical nanopore can have all these transport properties by changing the ion species and their concentrations on each side of the membrane. Moreover, the cation versus anion selectivity of the pores can be changed. We find that polyvalent cations like Ca(2+) and the trivalent cobalt sepulchrate produce localized charge inversion to change the effective pore surface charge profile from negative to positive. These effects are reversible so that the transport and selectivity characteristics of ionic devices can be tuned, much as the gate voltage tunes the properties of a semiconductor.


Biophysical Journal | 2008

Intracellular Calcium Release Channels Mediate Their Own Countercurrent: The Ryanodine Receptor Case Study

Dirk Gillespie; Michael Fill

Intracellular calcium release channels like ryanodine receptors (RyRs) and inositol trisphosphate receptors (IP(3)Rs) mediate large Ca(2+) release events from Ca(2+) storage organelles lasting >5 ms. To have such long-lasting Ca(2+) efflux, a countercurrent of other ions is necessary to prevent the membrane potential from becoming the Ca(2+) Nernst potential in <1 ms. A recent model of ion permeation through a single, open RyR channel is used here to show that the vast majority of this countercurrent is conducted by the RyR itself. Consequently, changes in membrane potential are minimized locally and instantly, assuring maintenance of a Ca(2+)-driving force. This RyR autocountercurrent is possible because of the poor Ca(2+) selectivity and high conductance for both monovalent and divalent cations of these channels. The model shows that, under physiological conditions, the autocountercurrent clamps the membrane potential near 0 mV within approximately 150 mus. Consistent with experiments, the model shows how RyR unit Ca(2+) current is defined by luminal [Ca(2+)], permeable ion composition and concentration, and pore selectivity and conductance. This very likely is true of the highly homologous pore of the IP(3)R channel.


Journal of Chemical Physics | 2006

The effect of protein dielectric coefficient on the ionic selectivity of a calcium channel.

Dezső Boda; Mónika Valiskó; Bob Eisenberg; Wolfgang Nonner; Douglas Henderson; Dirk Gillespie

Calcium-selective ion channels are known to have carboxylate-rich selectivity filters, a common motif that is primarily responsible for their high Ca(2+) affinity. Different Ca(2+) affinities ranging from micromolar (the L-type Ca channel) to millimolar (the ryanodine receptor channel) are closely related to the different physiological functions of these channels. To understand the physical mechanism for this range of affinities given similar amino acids in their selectivity filters, we use grand canonical Monte Carlo simulations to assess the binding of monovalent and divalent ions in the selectivity filter of a model Ca channel. We use a reduced model where the electolyte is modeled by hard-sphere ions embedded in a continuum dielectric solvent, while the interior of protein surrounding the channel is allowed to have a dielectric coefficient different from that of the electrolyte. The induced charges that appear on the protein/lumen interface are calculated by the induced charge computation method [Boda et al., Phys. Rev. E 69, 046702 (2004)]. It is shown that decreasing the dielectric coefficient of the protein attracts more cations into the pore because the proteins carboxyl groups induce negative charges on the dielectric boundary. As the density of the hard-sphere ions increases in the filter, Ca(2+) is absorbed into the filter with higher probability than Na(+) because Ca(2+) provides twice the charge to neutralize the negative charge of the pore (both structural carboxylate oxygens and induced charges) than Na(+) while occupying about the same space (the charge/space competition mechanism). As a result, Ca(2+) affinity is improved an order of magnitude by decreasing the protein dielectric coefficient from 80 to 5. Our results indicate that adjusting the dielectric properties of the protein surrounding the permeation pathway is a possible way for evolution to regulate the Ca(2+) affinity of the common four-carboxylate motif.


The Journal of General Physiology | 2009

Ionic selectivity in L-type calcium channels by electrostatics and hard-core repulsion

Dezső Boda; Mónika Valiskó; Douglas Henderson; Bob Eisenberg; Dirk Gillespie; Wolfgang Nonner

A physical model of selective “ion binding” in the L-type calcium channel is constructed, and consequences of the model are compared with experimental data. This reduced model treats only ions and the carboxylate oxygens of the EEEE locus explicitly and restricts interactions to hard-core repulsion and ion–ion and ion–dielectric electrostatic forces. The structural atoms provide a flexible environment for passing cations, thus resulting in a self-organized induced-fit model of the selectivity filter. Experimental conditions involving binary mixtures of alkali and/or alkaline earth metal ions are computed using equilibrium Monte Carlo simulations in the grand canonical ensemble. The model pore rejects alkali metal ions in the presence of biological concentrations of Ca2+ and predicts the blockade of alkali metal ion currents by micromolar Ca2+. Conductance patterns observed in varied mixtures containing Na+ and Li+, or Ba2+ and Ca2+, are predicted. Ca2+ is substantially more potent in blocking Na+ current than Ba2+. In apparent contrast to experiments using buffered Ca2+ solutions, the predicted potency of Ca2+ in blocking alkali metal ion currents depends on the species and concentration of the alkali metal ion, as is expected if these ions compete with Ca2+ for the pore. These experiments depend on the problematic estimation of Ca2+ activity in solutions buffered for Ca2+ and pH in a varying background of bulk salt. Simulations of Ca2+ distribution with the model pore bathed in solutions containing a varied amount of Li+ reveal a “barrier and well” pattern. The entry/exit barrier for Ca2+ is strongly modulated by the Li+ concentration of the bath, suggesting a physical explanation for observed kinetic phenomena. Our simulations show that the selectivity of L-type calcium channels can arise from an interplay of electrostatic and hard-core repulsion forces among ions and a few crucial channel atoms. The reduced system selects for the cation that delivers the largest charge in the smallest ion volume.


European Biophysics Journal | 2002

Physical descriptions of experimental selectivity measurements in ion channels

Dirk Gillespie; Robert S. Eisenberg

Abstract. Three experiments that quantify the amount of selectivity exhibited by a biological ion channel are examined with Poisson-Nernst-Planck (PNP) theory. Conductance ratios and the conductance mole fraction experiments are examined by considering a simple model ion channel for which an approximate solution to the PNP equations with Donnan boundary conditions is derived. A more general result is derived for the Goldman-Hodgkin-Katz permeability ratio. The results show that (1) the conductance ratio measures the ratio of the diffusion coefficients of the ions inside the channel, (2) the mole fraction experiment measures the difference of the excess chemical potentials of the ions inside the channel, and (3) the permeability ratio measures both diffusion coefficients and excess chemical potentials. The results are used to divide selectivity into two components: partitioning, an equilibrium measure of how well the ions enter the channel, and diffusion, a nonequilibrium measure of how well the ions move through the channel.


Biophysical Journal | 2008

The anomalous mole fraction effect in calcium channels: a measure of preferential selectivity.

Dirk Gillespie; Dezsö Boda

The cause of the anomalous mole fraction effect (AMFE) in calcium-selective ion channels is studied. An AMFE occurs when the conductance through a channel is lower in a mixture of salts than in the pure salts at the same concentration. The textbook interpretation of the AMFE is that multiple ions move through the pore in coordinated, single-file motion. Instead of this, we find that at its most basic level an AMFE reflects a channels preferential binding selectivity for one ion species over another. The AMFE is explained by considering the charged and uncharged regions of the pore as electrical resistors in series: the AMFE is produced by these regions of high and low ion concentration changing differently with mole fraction due to the preferential ion selectivity. This is demonstrated with simulations of a model L-type calcium channel and a mathematical analysis of a simplistic point-charge model. The particle simulations reproduce the experimental data of two L-type channel AMFEs. Conditions under which an AMFE may be found experimentally are discussed. The resistors-in-series model provides a fundamentally different explanation of the AMFE than the traditional theory and does not require single filing, multiple occupancy, or momentum-correlated ion motion.


European Journal of Applied Mathematics | 2008

Singular perturbation analysis of the steady-state Poisson-Nernst-Planck system: Applications to ion channels.

Amit Singer; Dirk Gillespie; John Norbury; Robert S. Eisenberg

Ion channels are proteins with a narrow hole down their middle that control a wide range of biological function by controlling the flow of spherical ions from one macroscopic region to another. Ion channels do not change their conformation on the biological time scale once they are open, so they can be described by a combination of Poisson and drift-diffusion (Nernst-Planck) equations called PNP in biophysics. We use singular perturbation techniques to analyse the steady-state PNP system for a channel with a general geometry and a piecewise constant permanent charge profile. We construct an outer solution for the case of a constant permanent charge density in three dimensions that is also a valid solution of the one-dimensional system. The asymptotical current-voltage (I-V ) characteristic curve of the device (obtained by the singular perturbation analysis) is shown to be a very good approximation of the numerical I-V curve (obtained by solving the system numerically). The physical constraint of non-negative concentrations implies a unique solution, i.e., for each given applied potential there corresponds a unique electric current (relaxing this constraint yields non-physical multiple solutions for sufficiently large voltages).


Biophysical Journal | 2008

Bubbles, Gating, and Anesthetics in Ion Channels

Roland Roth; Dirk Gillespie; Wolfgang Nonner; Robert E. Eisenberg

We suggest that bubbles are the bistable hydrophobic gates responsible for the on-off transitions of single channel currents. In this view, many types of channels gate by the same physical mechanism-dewetting by capillary evaporation-but different types of channels use different sensors to modulate hydrophobic properties of the channel wall and thereby trigger and control bubbles and gating. Spontaneous emptying of channels has been seen in many simulations. Because of the physics involved, such phase transitions are inherently sensitive, unstable threshold phenomena that are difficult to simulate reproducibly and thus convincingly. We present a thermodynamic analysis of a bubble gate using morphometric density functional theory of classical (not quantum) mechanics. Thermodynamic analysis of phase transitions is generally more reproducible and less sensitive to details than simulations. Anesthetic actions of inert gases-and their interactions with hydrostatic pressure (e.g., nitrogen narcosis)-can be easily understood by actions on bubbles. A general theory of gas anesthesia may involve bubbles in channels. Only experiments can show whether, or when, or which channels actually use bubbles as hydrophobic gates: direct observation of bubbles in channels is needed. Existing experiments show thin gas layers on hydrophobic surfaces in water and suggest that bubbles nearly exist in bulk water.


Biophysical Journal | 2009

Reinterpreting the anomalous mole fraction effect: the ryanodine receptor case study.

Dirk Gillespie; Janhavi Giri; Michael Fill

The origin of the anomalous mole fraction effect (AMFE) in calcium channels is explored with a model of the ryanodine receptor. This model predicted and experiments verified new AMFEs in the cardiac isoform. In mole fraction experiments, conductance is measured in mixtures of ion species X and Y as their relative amounts (mole fractions) vary. This curve can have a minimum (an AMFE). The traditional interpretation of the AMFE is that multiple interacting ions move through the pore in a single file. Mole fraction curves without minima (no AMFEs) are generally interpreted as X displacing Y from the pore in a proportion larger than its bath mole fraction (preferential selectivity). We find that the AMFE is also caused by preferential selectivity of X over Y, if X and Y have similar conductances. This is a prediction applicable to any channel and provides a fundamentally different explanation of the AMFE that does not require single filing or multiple occupancy: preferential selectivity causes the resistances to current flow in the baths, channel vestibules, and selectivity filter to change differently with mole fraction, and produce the AMFE.

Collaboration


Dive into the Dirk Gillespie's collaboration.

Top Co-Authors

Avatar

Bob Eisenberg

Rush University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Dezső Boda

University of Pannonia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Fill

Rush University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dezsö Boda

University of Pannonia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge