Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Fill is active.

Publication


Featured researches published by Michael Fill.


The EMBO Journal | 1999

Bcl-xL regulates apoptosis by heterodimerization-dependent and -independent mechanisms

Andy J. Minn; Claudia S. Kettlun; Heng Liang; Ameeta Kelekar; Matthew G. Vander Heiden; Brian S. Chang; Steven W. Fesik; Michael Fill; Craig B. Thompson

A hydrophobic cleft formed by the BH1, BH2 and BH3 domains of Bcl‐xL is responsible for interactions between Bcl‐xL and BH3‐containing death agonists. Mutants were constructed which did not bind to Bax but retained anti‐apoptotic activity. Since Bcl‐xL can form an ion channel in synthetic lipid membranes, the possibility that this property has a role in heterodimerization‐independent cell survival was tested by replacing amino acids within the predicted channel‐forming domain with the corresponding amino acids from Bax. The resulting chimera showed a reduced ability to adopt an open conductance state over a wide range of membrane potentials. Although this construct retained the ability to heterodimerize with Bax and to inhibit apoptosis, when a mutation was introduced that rendered the chimera incapable of heterodimerization, the resulting protein failed to prevent both apoptosis in mammalian cells and Bax‐mediated growth defect in yeast. Similar to mammalian cells undergoing apoptosis, yeast cells expressing Bax exhibited changes in mitochondrial properties that were inhibited by Bcl‐xL through heterodimerization‐dependent and ‐independent mechanisms. These data suggest that Bcl‐xL regulates cell survival by at least two distinct mechanisms; one is associated with heterodimerization and the other with the ability to form a sustained ion channel.


Biophysical Journal | 1990

Abnormal ryanodine receptor channels in malignant hyperthermia

Michael Fill; Roberto Coronado; J.R. Mickelson; J. Vilven; Jianjie Ma; B.A. Jacobson; C.F. Louis

Previous studies have demonstrated a defect associated with the calcium release mechanism of sarcoplasmic reticulum (SR) from individuals susceptible to malignant hyperthermia (MH). To examine whether SR calcium release channels were indeed altered in MH, SR vesicles were purified from normal and MH susceptible (MHS) porcine muscle. The Ca2+ dependence of calcium efflux rates from 45Ca2(+)-filled SR vesicles was then compared with the Ca2+ dependence of single-channel recordings of SR vesicles incorporated into planar lipid bilayers. The rate constants of 45Ca2+ efflux from MHS SR were two to threefold larger than from normal SR over a wide range of myoplasmic Ca2+. Normal and MHS single channels were progressively activated in a similar fashion by cis Ca2+ from pCa 7 to 4. However, below pCa 4, normal channels were inactivated by cis Ca2+, whereas MHS channels remained open for significantly longer times. The altered Ca2+ dependence of channel inactivation in MHS SR was also evident when Ca2+ was increased on the trans side while cis Ca2+ was held constant. We propose that a defect in a low-affinity Ca2+ binding site is responsible for the altered gating of MHS SR channels. Such a defect could logically result from a mutation in the gene encoding the calcium release channel, providing a testable hypothesis for the molecular basis of this inherited disorder.


Biophysical Journal | 1998

Isoform-specific function of single inositol 1,4,5-trisphosphate receptor channels.

Josefina Ramos-Franco; Michael Fill; Gregory A. Mignery

The inositol 1,4,5-trisphosphate receptor (InsP3R) family of Ca2+ release channels is central to intracellular Ca2+ signaling in mammalian cells. The InsP3R channels release Ca2+ from intracellular compartments to generate localized Ca2+ transients that govern a myriad of cellular signaling phenomena (Berridge, 1993. Nature. 361:315-325; Joseph, 1996. Cell Signal. 8:1-7; Kume et al., 1997. Science. 278:1940-1943; Berridge, 1997. Nature. 368:759-760). express multiple InsP3R isoforms, but only the function of the single type 1 InsP3R channel is known. Here the single-channel function of single type 2 InsP3R channel is defined for the first time. The type 2 InsP3R forms channels with permeation properties similar to that of the type 1 receptor. The InsP3 regulation and Ca2+ regulation of type 1 and type 2 InsP3R channels are strikingly different. Both InsP3 and Ca2+ are more effective at activating single type 2 InsP3R, indicating that single type 2 channels mobilize substantially more Ca2+ than single type 1 channels in cells. Furthermore, high cytoplasmic Ca2+ concentrations inactivate type 1, but not type 2, InsP3R channels. This indicates that type 2 InsP3R channel is different from the type 1 channel in that its activity will not be inherently self-limiting, because Ca2+ passing through an active type 2 channel cannot feed back and turn the channel off. Thus the InsP3R identity will help define the spatial and temporal nature of local Ca2+ signaling events and may contribute to the segregation of parallel InsP3 signaling cascades in mammalian cells.


Nature Medicine | 2011

Carvedilol and its new analogs suppress arrhythmogenic store overload-induced Ca2+ release

Qiang Zhou; Jianmin Xiao; Dawei Jiang; Ruiwu Wang; Kannan Vembaiyan; Aixia Wang; Christopher Smith; Cuihong Xie; Wenqian Chen; Jingqun Zhang; Xixi Tian; Peter P. Jones; Xiaowei Zhong; Ang Guo; Haiyan Chen; Lin Zhang; Weizhong Zhu; Dongmei Yang; Xiaodong Li; Ju Chen; Anne M. Gillis; Henry J. Duff; Heping Cheng; Arthur M. Feldman; Long-Sheng Song; Michael Fill; Thomas G. Back; S. R. Wayne Chen

Carvedilol is one of the most effective beta blockers for preventing ventricular tachyarrhythmias in heart failure, but the mechanisms underlying its favorable antiarrhythmic benefits remain unclear. Spontaneous Ca2+ waves, also called store overload–induced Ca2+ release (SOICR), evoke ventricular tachyarrhythmias in individuals with heart failure. Here we show that carvedilol is the only beta blocker tested that effectively suppresses SOICR by directly reducing the open duration of the cardiac ryanodine receptor (RyR2). This unique anti-SOICR activity of carvedilol, combined with its beta-blocking activity, probably contributes to its favorable antiarrhythmic effect. To enable optimal titration of carvedilols actions as a beta blocker and as a suppressor of SOICR separately, we developed a new SOICR-inhibiting, minimally beta-blocking carvedilol analog, VK-II-86. VK-II-86 prevented stress-induced ventricular tachyarrhythmias in RyR2-mutant mice and did so more effectively when combined with either of the selective beta blockers metoprolol or bisoprolol. Combining SOICR inhibition with optimal beta blockade has the potential to provide antiarrhythmic therapy that can be tailored to individual patients.


The Journal of General Physiology | 2008

Luminal Ca2+ Regulation of Single Cardiac Ryanodine Receptors: Insights Provided by Calsequestrin and its Mutants

Jia Qin; Giorgia Valle; Alma Nani; Alessandra Nori; Nicoletta Rizzi; Silvia G. Priori; Pompeo Volpe; Michael Fill

The luminal Ca2+ regulation of cardiac ryanodine receptor (RyR2) was explored at the single channel level. The luminal Ca2+ and Mg2+ sensitivity of single CSQ2-stripped and CSQ2-associated RyR2 channels was defined. Action of wild-type CSQ2 and of two mutant CSQ2s (R33Q and L167H) was also compared. Two luminal Ca2+ regulatory mechanism(s) were identified. One is a RyR2-resident mechanism that is CSQ2 independent and does not distinguish between luminal Ca2+ and Mg2+. This mechanism modulates the maximal efficacy of cytosolic Ca2+ activation. The second luminal Ca2+ regulatory mechanism is CSQ2 dependent and distinguishes between luminal Ca2+ and Mg2+. It does not depend on CSQ2 oligomerization or CSQ2 monomer Ca2+ binding affinity. The key Ca2+-sensitive step in this mechanism may be the Ca2+-dependent CSQ2 interaction with triadin. The CSQ2-dependent mechanism alters the cytosolic Ca2+ sensitivity of the channel. The R33Q CSQ2 mutant can participate in luminal RyR2 Ca2+ regulation but less effectively than wild-type (WT) CSQ2. CSQ2-L167H does not participate in luminal RyR2 Ca2+ regulation. The disparate actions of these two catecholaminergic polymorphic ventricular tachycardia (CPVT)-linked mutants implies that either alteration or elimination of CSQ2-dependent luminal RyR2 regulation can generate the CPVT phenotype. We propose that the RyR2-resident, CSQ2-independent luminal Ca2+ mechanism may assure that all channels respond robustly to large (>5 muM) local cytosolic Ca2+ stimuli, whereas the CSQ2-dependent mechanism may help close RyR2 channels after luminal Ca2+ falls below approximately 0.5 mM.


Trends in Neurosciences | 1988

Ryanodine receptor channel of sarcoplasmic reticulum

Michael Fill; Roberto Coronado

Abstract The Ca 2+ release channel of the sarcoplasmic reticulum of muscle cells has been purified using ryanodine, a plant alkaloid that binds to the 450 kDa channel protein with nanomolar affinity. Electron microscopy indicates that the ryanodine receptor is a tetramer and forms the ‘feet’ structures described in muscle triads. This protein complex is most likely involved in inter-membrane signal transduction during excitation-contraction coupling.


Nature Medicine | 2014

The ryanodine receptor store-sensing gate controls Ca2+ waves and Ca2+-triggered arrhythmias

Wenqian Chen; Ruiwu Wang; Biyi Chen; Xiaowei Zhong; Huihui Kong; Yunlong Bai; Qiang Zhou; Cuihong Xie; Jingqun Zhang; Ang Guo; Xixi Tian; Peter P. Jones; Megan L. O'Mara; Yingjie Liu; Tao Mi; Lin Zhang; Jeff Bolstad; Lisa Semeniuk; Hongqiang Cheng; Jianlin Zhang; Ju Chen; D. Peter Tieleman; Anne M. Gillis; Henry J. Duff; Michael Fill; Long-Sheng Song; S. R. Wayne Chen

Spontaneous Ca2+ release from intracellular stores is important for various physiological and pathological processes. In cardiac muscle cells, spontaneous store overload–induced Ca2+ release (SOICR) can result in Ca2+ waves, a major cause of ventricular tachyarrhythmias (VTs) and sudden death. The molecular mechanism underlying SOICR has been a mystery for decades. Here we show that a point mutation, E4872A, in the helix bundle crossing region (the proposed gate) of the cardiac ryanodine receptor (RyR2) completely abolishes luminal, but not cytosolic, Ca2+ activation of RyR2. The introduction of metal-binding histidines at this site converts RyR2 into a luminal Ni2+-gated channel. Mouse hearts harboring a heterozygous RyR2 mutation at this site (E4872Q) are resistant to SOICR and are completely protected against Ca2+-triggered VTs. These data show that the RyR2 gate directly senses luminal (store) Ca2+, explaining the regulation of RyR2 by luminal Ca2+, the initiation of Ca2+ waves and Ca2+-triggered arrhythmias. This newly identified store-sensing gate structure is conserved in all RyR and inositol 1,4,5-trisphosphate receptor isoforms.


The Journal of Membrane Biology | 1993

Cytoplasmic Ca2+ does not inhibit the cardiac muscle sarcoplasmic reticulum ryanodine receptor Ca2+ channel, although Ca2+-induced Ca2+ inactivation of Ca2+ release is observed in native vesicles

A. Chu; Michael Fill; E. Stefani; Mark L. Entman

Single channel properties of cardiac and fast-twitch skeletal muscle sarcoplasmic reticulum (SR) release channels were compared in a planar bilayer by fusing SR membranes in a Cs+-conducting medium. We found that the pharmacology, Cs+ conductance and selectivity to monovalent and divalent cations of the two channels were similar. The cardiac SR channel exhibited multiple kinetic states. The open and closed lifetimes were not altered from a range of 10−7 to 10−3 M Ca2+, but the proportion of closed and open states shifted to shorter closings and openings, respectively.However, while the single channel activity of the skeletal SR channel was activated and inactivated by micromolar and millimolar Ca2+, respectively, the cardiac SR channel remained activated in the presence of high [Ca2+]. In correlation to these studies, [3H]ryanodine binding by the receptors of the two channel receptors was inhibited by high [Ca2+] in skeletal but not in cardiac membranes in the presence of adenine nucleotides. There is, however, a minor inhibition of [3H]ryanodine binding of cardiac SR at millimolar Ca2+ in the absence of adenine nucleotides.When Ca2+-induced Ca2+ release was examined from preloaded native SR vesicles, the release rates followed a normal biphasic curve, with Ca2+-induced inactivation at high [Ca2+] for both cardiac and skeletal SR. Our data suggest that the molecular basis of regulation of the SR Ca2+ release channel in cardiac and skeletal muscle is different, and that the cardiac SR channel isoform lacks a Ca2+-inactivated site.


Biophysical Journal | 2008

Intracellular Calcium Release Channels Mediate Their Own Countercurrent: The Ryanodine Receptor Case Study

Dirk Gillespie; Michael Fill

Intracellular calcium release channels like ryanodine receptors (RyRs) and inositol trisphosphate receptors (IP(3)Rs) mediate large Ca(2+) release events from Ca(2+) storage organelles lasting >5 ms. To have such long-lasting Ca(2+) efflux, a countercurrent of other ions is necessary to prevent the membrane potential from becoming the Ca(2+) Nernst potential in <1 ms. A recent model of ion permeation through a single, open RyR channel is used here to show that the vast majority of this countercurrent is conducted by the RyR itself. Consequently, changes in membrane potential are minimized locally and instantly, assuring maintenance of a Ca(2+)-driving force. This RyR autocountercurrent is possible because of the poor Ca(2+) selectivity and high conductance for both monovalent and divalent cations of these channels. The model shows that, under physiological conditions, the autocountercurrent clamps the membrane potential near 0 mV within approximately 150 mus. Consistent with experiments, the model shows how RyR unit Ca(2+) current is defined by luminal [Ca(2+)], permeable ion composition and concentration, and pore selectivity and conductance. This very likely is true of the highly homologous pore of the IP(3)R channel.


Pflügers Archiv: European Journal of Physiology | 1997

Kinetic properties of DM-nitrophen and calcium indicators: rapid transient response to flash photolysis

A. L. Escobar; Patricio Velez; Albert M. Kim; Fredy Cifuentes; Michael Fill; Julio L. Vergara

Abstract We describe a high temporal resolution confocal spot microfluorimetry setup which makes possible the detection of fluorescence transients elicited by Ca2+ indicators in response to large (50–200 μM), short duration (<100 ns), free [Ca2+] transients generated by laser flash photolysis of DM-nitrophen (DM-n; caged Ca2+). The equilibrium and kinetic properties of the commercially available indicators Fluo-3, Rhod-2, CalciumOrange-5N (COr-5N) and CalciumGreen-2 (CGr-2) were determined experimentally. The data reveal that COr-5N displays simple, fast response kinetics while, in contrast, Fluo-3, Rhod-2 and CGr-2 are characterized by significantly slower kinetic properties. These latter indicators may be unsuitable for tracking Ca2+ signaling events lasting only a few milliseconds. A model which accurately predicts the time course of fluorescence transients in response to rapid free [Ca2+] changes was developed. Experimental data and model predictions concur only when the association rate constant of DM-n is approximately 20 times faster than previously reported. This work establishes a quantitative theoretical framework for the study of fast Ca2+ signaling events and the use of flash photolysis in cells and model systems.

Collaboration


Dive into the Michael Fill's collaboration.

Top Co-Authors

Avatar

Dirk Gillespie

Rush University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Alma Nani

Rush University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Josefina Ramos-Franco

Rush University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. L. Escobar

Texas Tech University Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Patricio Velez

Loyola University Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Haiyan Chen

Rush University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Long-Sheng Song

Roy J. and Lucille A. Carver College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge