Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dirk Grimm is active.

Publication


Featured researches published by Dirk Grimm.


Nature | 2006

Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways

Dirk Grimm; Konrad L. Streetz; Catherine L. Jopling; Theresa A. Storm; Kusum Pandey; Corrine R. Davis; Patricia L. Marion; Felix H. Salazar; Mark A. Kay

RNA interference (RNAi) is a universal and evolutionarily conserved phenomenon of post-transcriptional gene silencing by means of sequence-specific mRNA degradation, triggered by small double-stranded RNAs. Because this mechanism can be efficiently induced in vivo by expressing target-complementary short hairpin RNA (shRNA) from non-viral and viral vectors, RNAi is attractive for functional genomics and human therapeutics. Here we systematically investigate the long-term effects of sustained high-level shRNA expression in livers of adult mice. Robust shRNA expression in all the hepatocytes after intravenous infusion was achieved with an optimized shRNA delivery vector based on duplex-DNA-containing adeno-associated virus type 8 (AAV8). An evaluation of 49 distinct AAV/shRNA vectors, unique in length and sequence and directed against six targets, showed that 36 resulted in dose-dependent liver injury, with 23 ultimately causing death. Morbidity was associated with the downregulation of liver-derived microRNAs (miRNAs), indicating possible competition of the latter with shRNAs for limiting cellular factors required for the processing of various small RNAs. In vitro and in vivo shRNA transfection studies implied that one such factor, shared by the shRNA/miRNA pathways and readily saturated, is the nuclear karyopherin exportin-5. Our findings have fundamental consequences for future RNAi-based strategies in animals and humans, because controlling intracellular shRNA expression levels will be imperative. However, the risk of oversaturating endogenous small RNA pathways can be minimized by optimizing shRNA dose and sequence, as exemplified here by our report of persistent and therapeutic RNAi against human hepatitis B virus in vivo.


Journal of Virology | 2006

The 37/67-Kilodalton Laminin Receptor Is a Receptor for Adeno-Associated Virus Serotypes 8, 2, 3, and 9

Bassel Akache; Dirk Grimm; Kusum Pandey; Stephen R. Yant; Hui Xu; Mark A. Kay

ABSTRACT Adeno-associated virus serotype 8 (AAV8) is currently emerging as a powerful gene transfer vector, owing to its capability to efficiently transduce many different tissues in vivo. While this is believed to be in part due to its ability to uncoat more readily than other AAV serotypes such as AAV2, understanding all the processes behind AAV8 transduction is important for its application and optimal use in human gene therapy. Here, we provide the first report of a cellular receptor for AAV8, the 37/67-kDa laminin receptor (LamR). We document binding of LamR to AAV8 capsid proteins and intact virions in vitro and demonstrate its contribution to AAV8 transduction of cultured cells and mouse liver in vivo. We also show that LamR plays a role in transduction by three other closely related serotypes (AAV2, -3, and -9). Sequence and deletion analysis allowed us to map LamR binding to two protein subdomains predicted to be exposed on the AAV capsid exterior. Use of LamR, which is constitutively expressed in many clinically relevant tissues and is overexpressed in numerous cancers, provides a molecular explanation for AAV8s broad tissue tropism. Along with its robust transduction efficiency, our findings support the continued development of AAV8-based vectors for clinical applications in humans, especially for tumor gene therapy.


Journal of Virology | 2008

In Vitro and In Vivo Gene Therapy Vector Evolution via Multispecies Interbreeding and Retargeting of Adeno-Associated Viruses†

Dirk Grimm; Joyce S. Lee; Lora Wang; Tushar J. Desai; Bassel Akache; Theresa A. Storm; Mark A. Kay

ABSTRACT Adeno-associated virus (AAV) serotypes differ broadly in transduction efficacies and tissue tropisms and thus hold enormous potential as vectors for human gene therapy. In reality, however, their use in patients is restricted by prevalent anti-AAV immunity or by their inadequate performance in specific targets, exemplified by the AAV type 2 (AAV-2) prototype in the liver. Here, we attempted to merge desirable qualities of multiple natural AAV isolates by an adapted DNA family shuffling technology to create a complex library of hybrid capsids from eight different wild-type viruses. Selection on primary or transformed human hepatocytes yielded pools of hybrids from five of the starting serotypes: 2, 4, 5, 8, and 9. More stringent selection with pooled human antisera (intravenous immunoglobulin [IVIG]) then led to the selection of a single type 2/type 8/type 9 chimera, AAV-DJ, distinguished from its closest natural relative (AAV-2) by 60 capsid amino acids. Recombinant AAV-DJ vectors outperformed eight standard AAV serotypes in culture and greatly surpassed AAV-2 in livers of naïve and IVIG-immunized mice. A heparin binding domain in AAV-DJ was found to limit biodistribution to the liver (and a few other tissues) and to affect vector dose response and antibody neutralization. Moreover, we report the first successful in vivo biopanning of AAV capsids by using a new AAV-DJ-derived viral peptide display library. Two peptides enriched after serial passaging in mouse lungs mediated the retargeting of AAV-DJ vectors to distinct alveolar cells. Our study validates DNA family shuffling and viral peptide display as two powerful and compatible approaches to the molecular evolution of novel AAV vectors for human gene therapy applications.


Journal of Clinical Investigation | 2011

Fate tracing of mature hepatocytes in mouse liver homeostasis and regeneration

Yann Malato; Syed Naqvi; Nina Schürmann; Raymond T. Ng; Bruce Wang; Joan Zape; Mark A. Kay; Dirk Grimm; Holger Willenbring

Recent evidence has contradicted the prevailing view that homeostasis and regeneration of the adult liver are mediated by self duplication of lineage-restricted hepatocytes and biliary epithelial cells. These new data suggest that liver progenitor cells do not function solely as a backup system in chronic liver injury; rather, they also produce hepatocytes after acute injury and are in fact the main source of new hepatocytes during normal hepatocyte turnover. In addition, other evidence suggests that hepatocytes are capable of lineage conversion, acting as precursors of biliary epithelial cells during biliary injury. To test these concepts, we generated a hepatocyte fate-tracing model based on timed and specific Cre recombinase expression and marker gene activation in all hepatocytes of adult Rosa26 reporter mice with an adenoassociated viral vector. We found that newly formed hepatocytes derived from preexisting hepatocytes in the normal liver and that liver progenitor cells contributed minimally to acute hepatocyte regeneration. Further, we found no evidence that biliary injury induced conversion of hepatocytes into biliary epithelial cells. These results therefore restore the previously prevailing paradigms of liver homeostasis and regeneration. In addition, our new vector system will be a valuable tool for timed, efficient, and specific loop out of floxed sequences in hepatocytes.


The EMBO Journal | 2001

DNA helicase‐mediated packaging of adeno‐associated virus type 2 genomes into preformed capsids

Jason King; Ralf Dubielzig; Dirk Grimm; Jürgen A. Kleinschmidt

Helicases not only catalyse the disruption of hydrogen bonding between complementary regions of nucleic acids, but also move along nucleic acid strands in a polar fashion. Here we show that the Rep52 and Rep40 proteins of adeno‐associated virus type 2 (AAV‐2) are required to translocate capsid‐associated, single‐stranded DNA genomes into preformed empty AAV‐2 capsids, and that the DNA helicase function of Rep52/40 is essential for this process. Furthermore, DNase protection experiments suggest that insertion of AAV‐2 genomes proceeds from the 3′ end, which correlates with the 3′→5′ processivity demonstrated for the Rep52/40 helicase. A model is proposed in which capsid‐immobilized helicase complexes act as molecular motors to ‘pump’ single‐stranded DNA across the capsid boundary.


PLOS Pathogens | 2010

Six RNA viruses and forty-one hosts: Viral small RNAs and modulation of small RNA repertoires in vertebrate and invertebrate systems

Poornima Parameswaran; Ella H. Sklan; Courtney Wilkins; Trever B. Burgon; Melanie A. Samuel; Rui Lu; K. Mark Ansel; Vigo Heissmeyer; Shirit Einav; William T. Jackson; Tammy Doukas; Suman Paranjape; Charlotta Polacek; Flavia Barreto dos Santos; Roxana Jalili; Farbod Babrzadeh; Baback Gharizadeh; Dirk Grimm; Mark A. Kay; Satoshi Koike; Peter Sarnow; Mostafa Ronaghi; Shou-Wei Ding; Eva Harris; Marie Chow; Michael S. Diamond; Karla Kirkegaard; Jeffrey S. Glenn; Andrew Fire

We have used multiplexed high-throughput sequencing to characterize changes in small RNA populations that occur during viral infection in animal cells. Small RNA-based mechanisms such as RNA interference (RNAi) have been shown in plant and invertebrate systems to play a key role in host responses to viral infection. Although homologs of the key RNAi effector pathways are present in mammalian cells, and can launch an RNAi-mediated degradation of experimentally targeted mRNAs, any role for such responses in mammalian host-virus interactions remains to be characterized. Six different viruses were examined in 41 experimentally susceptible and resistant host systems. We identified virus-derived small RNAs (vsRNAs) from all six viruses, with total abundance varying from “vanishingly rare” (less than 0.1% of cellular small RNA) to highly abundant (comparable to abundant micro-RNAs “miRNAs”). In addition to the appearance of vsRNAs during infection, we saw a number of specific changes in host miRNA profiles. For several infection models investigated in more detail, the RNAi and Interferon pathways modulated the abundance of vsRNAs. We also found evidence for populations of vsRNAs that exist as duplexed siRNAs with zero to three nucleotide 3′ overhangs. Using populations of cells carrying a Hepatitis C replicon, we observed strand-selective loading of siRNAs onto Argonaute complexes. These experiments define vsRNAs as one possible component of the interplay between animal viruses and their hosts.


Molecular Therapy | 2008

Expression of shRNA From a Tissue-specific pol II Promoter Is an Effective and Safe RNAi Therapeutic

Jeffery C. Giering; Dirk Grimm; Theresa A. Storm; Mark A. Kay

It has been observed that overexpression of some short-hairpin RNAs (shRNAs) can induce acute cytotoxicity. This has raised concerns about the safety of using RNA interference (RNAi) technology as a potential therapeutic tool. We have sought to address this challenge of expression control by developing a mono-cistronic vector for the tissue-specific expression of an shRNA from a liver-derived polymerase (pol) II promoter. This new construct efficiently induces target silencing in hepatoma cells in vitro and in mouse livers in vivo. In order to demonstrate the therapeutic potential and improved safety of this approach, we selected an shRNA targeting the envelope surface antigen (sAg) of hepatitis B virus (HBV), which is among the most toxic when expressed from the commonly used U6 promoter. Packaging it as a double-stranded DNA into an adeno-associated virus (AAV) pseudotype 8 and delivering it at a high particle dose (1 x 10(12)) to HBV transgenic mice resulted in the stable reduction of serum sAg to 85% of starting levels, without any concomitant sign of liver damage. With this improved tolerability, the liver-specific pol II shRNA expression persisted for more than one year after the injection. We conclude that this pol II shRNA expression system combined with a potent delivery vector represents an effective alternative to either U6-based strategies or systems that achieve tissue specificity through the use of additional elements.


Journal of Clinical Investigation | 2007

Therapeutic application of RNAi: is mRNA targeting finally ready for prime time?

Dirk Grimm; Mark A. Kay

With unprecedented speed, RNA interference (RNAi) has advanced from its basic discovery in lower organisms to becoming a powerful genetic tool and perhaps our single most promising biotherapeutic for a wide array of diseases. Numerous studies document RNAi efficacy in laboratory animals, and the first clinical trials are underway and thus far suggest that RNAi is safe to use in humans. Yet substantial hurdles have also surfaced and must be surmounted before therapeutic RNAi applications can become a standard therapy. Here we review the most critical roadblocks and concerns for clinical RNAi transition, delivery, and safety. We highlight emerging solutions and concurrently discuss novel therapeutic RNAi-based concepts. The current rapid advances create realistic optimism that the establishment of RNAi as a new and potent clinical modality in humans is near.


Gene Therapy | 1999

Titration of AAV-2 particles via a novel capsid ELISA: packaging of genomes can limit production of recombinant AAV-2.

Dirk Grimm; A Kern; M Pawlita; F K Ferrari; R J Samulski; Jürgen A. Kleinschmidt

We demonstrate the rapid and reliable quantification of physical AAV-2 (adeno-associated virus type 2) particles via a novel ELISA based on a monoclonal antibody which selectively recognizes assembled AAV-2 capsids. Titration of a variety of recombinant AAV-2 (rAAV) preparations revealed that at least 80% of all particles were empty, compared with a maximum of 50% in wild-type AAV-2 stocks, indicating that the recombinant genomes were less efficiently encapsidated. This finding was confirmed upon titration of CsCl gradient fractions from recombinant and wild-type AAV-2 stocks. ELISA-based measurement of capsid numbers revealed a large number of physical particles with low densities corresponding to empty capsids in the recombinant, but not in the wild-type AAV-2 preparations. Moreover, additional expression of VP proteins during rAAV production was found to result in an excessive capsid formation, whilst yielding only minor increases in DNA-containing or transducing rAAV particles. We conclude that encapsidation of viral genomes rather than capsid assembly can be limiting for rAAV production, provided that a critical level of VP expression is maintained. The feasibility of quantifying AAV-2 capsid numbers via the ELISA allows determination of physical to DNA-containing or infectious particle ratios. These are important parameters which should help to optimize and standardize the production and application of recombinant AAV-2.


Advanced Drug Delivery Reviews | 2009

Small silencing RNAs: State-of-the-art☆

Dirk Grimm

Over just a single decade, we have witnessed the rapid maturation of the field of RNA interference - the sequence-specific gene silencing mediated by small double-stranded RNAs - directly from its infancy into adulthood. With exciting data currently emerging from first clinical trials, it is now more likely than ever that RNAi drugs will soon provide another potent class of agents in our battle against infectious and genetic diseases. Accelerating this process and adding to RNAis promise is our steadily expanding arsenal of innovative RNAi-based experimental tools and clinically applicable technologies. This article will critically review a selection of relevant recent advances in RNAi therapeutics, from novel asymmetric or bi-functional siRNA designs, deliberate use of small RNAs to regulate nuclear transcription, engineering of potent adeno-associated viral vectors for shRNA expression, exploitation of endogenous miRNAs to control transgene expression or vector tropism, to elegant attempts to inhibit cellular miRNAs involved in human disease. This review will also present cautionary notes on the potential risks inherent to in vivo RNAi applications, before discussing the latest surprising findings on circulating miRNAs in human body fluids, and concluding with an outlook into the possible future of RNAi as an increasingly powerful biomedical tool.

Collaboration


Dive into the Dirk Grimm's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ellen Wiedtke

University Hospital Heidelberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elena Senís

University Hospital Heidelberg

View shared research outputs
Top Co-Authors

Avatar

Juergen Kleinschmidt

German Cancer Research Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge