Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Theresa A. Storm is active.

Publication


Featured researches published by Theresa A. Storm.


Nature | 2006

Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways

Dirk Grimm; Konrad L. Streetz; Catherine L. Jopling; Theresa A. Storm; Kusum Pandey; Corrine R. Davis; Patricia L. Marion; Felix H. Salazar; Mark A. Kay

RNA interference (RNAi) is a universal and evolutionarily conserved phenomenon of post-transcriptional gene silencing by means of sequence-specific mRNA degradation, triggered by small double-stranded RNAs. Because this mechanism can be efficiently induced in vivo by expressing target-complementary short hairpin RNA (shRNA) from non-viral and viral vectors, RNAi is attractive for functional genomics and human therapeutics. Here we systematically investigate the long-term effects of sustained high-level shRNA expression in livers of adult mice. Robust shRNA expression in all the hepatocytes after intravenous infusion was achieved with an optimized shRNA delivery vector based on duplex-DNA-containing adeno-associated virus type 8 (AAV8). An evaluation of 49 distinct AAV/shRNA vectors, unique in length and sequence and directed against six targets, showed that 36 resulted in dose-dependent liver injury, with 23 ultimately causing death. Morbidity was associated with the downregulation of liver-derived microRNAs (miRNAs), indicating possible competition of the latter with shRNAs for limiting cellular factors required for the processing of various small RNAs. In vitro and in vivo shRNA transfection studies implied that one such factor, shared by the shRNA/miRNA pathways and readily saturated, is the nuclear karyopherin exportin-5. Our findings have fundamental consequences for future RNAi-based strategies in animals and humans, because controlling intracellular shRNA expression levels will be imperative. However, the risk of oversaturating endogenous small RNA pathways can be minimized by optimizing shRNA dose and sequence, as exemplified here by our report of persistent and therapeutic RNAi against human hepatitis B virus in vivo.


Journal of Virology | 2001

Extrachromosomal Recombinant Adeno-Associated Virus Vector Genomes Are Primarily Responsible for Stable Liver Transduction In Vivo

Hiroyuki Nakai; Stephen R. Yant; Theresa A. Storm; Sally Fuess; Leonard Meuse; Mark A. Kay

ABSTRACT Recombinant adeno-associated virus (rAAV) vectors stably transduce hepatocytes in experimental animals. Although the vector genomes are found both as extrachromosomes and as chromosomally integrated forms in hepatocytes, the relative proportion of each has not yet been clearly established. Using an in vivo assay based on the induction of hepatocellular regeneration via a surgical two-thirds partial hepatectomy, we have determined the proportion of integrated and extrachromosomal rAAV genomes in mouse livers and their relative contribution to stable gene expression in vivo. Plasma human coagulation factor IX (hF.IX) levels in mice originating from a chromosomally integrated hF.IX-expressing transposon vector remained unchanged with hepatectomy. This was in sharp contrast to what was observed when a surgical partial hepatectomy was performed in mice 6 weeks to 12 months after portal vein injection of a series of hF.IX-expressing rAAV vectors. At doses of 2.4 × 1011to 3.0 × 1011 vector genomes per mouse (n = 12), hF.IX levels and the average number of stably transduced vector genomes per cell decreased by 92 and 86%, respectively, after hepatectomy. In a separate study, one of three mice injected with a higher dose of rAAV had a higher proportion (67%) of integrated genomes, the significance of which is not known. Nevertheless, in general, these results indicate that, in most cases, no more than ∼10% of stably transduced genomes integrated into host chromosomes in vivo. Additionally, the results demonstrate that extrachromosomal, not integrated, genomes are the major form of rAAV in the liver and are the primary source of rAAV-mediated gene expression. This small fraction of integrated genomes greatly decreases the potential risk of vector-related insertional mutagenesis associated with all integrating vectors but also raises uncertainties as to whether rAAV-mediated hepatic gene expression can persist lifelong after a single vector administration.


Journal of Virology | 2004

Rapid Uncoating of Vector Genomes Is the Key to Efficient Liver Transduction with Pseudotyped Adeno-Associated Virus Vectors

Clare E. Thomas; Theresa A. Storm; Zan Huang; Mark A. Kay

ABSTRACT Transduction of the liver with single-stranded adeno-associated virus serotype 2 (AAV2) vectors is inefficient; less than 10% of hepatocytes are permissive for stable transduction, and transgene expression is characterized by a lag phase of up to 6 weeks. AAV2-based vector genomes packaged inside AAV6 or AAV8 capsids can transduce the liver with higher efficiency, but the molecular mechanisms underlying this phenomenon have not been determined. We now show that the primary barrier to transduction of the liver with vectors based on AAV2 capsids is uncoating of vector genomes in the nucleus. The majority of AAV2 genomes persist as encapsidated single-stranded molecules within the nucleus for as long as 6 weeks after vector administration. Double-stranded vector genomes packaged inside AAV2 capsids are at least 50-fold more active than single-stranded counterparts, but these vectors also exhibit a lag phase before maximal gene expression. Vector genomes packaged inside AAV6 or AAV8 capsids do not persist as encapsidated molecules and are more biologically active than vector genomes packaged inside AAV2 capsids. Our data suggest that the rate of uncoating of vector genomes determines the ability of complementary plus and minus single-stranded genomes to anneal together and convert to stable, biologically active double-stranded molecular forms.


Nature Genetics | 2003

AAV serotype 2 vectors preferentially integrate into active genes in mice

Hiroyuki Nakai; Eugenio Montini; Sally Fuess; Theresa A. Storm; Markus Grompe; Mark A. Kay

Recombinant adeno-associated virus serotype 2 (rAAV2) is a promising vector for gene therapy because it can achieve long-term stable transgene expression in animals and human subjects after direct administration of vectors into various target tissues. In the liver, although stable transgene expression primarily results from extrachromosomal vector genomes, a series of experiments has shown that vector genomes integrate into host chromosomes in hepatocytes at a low frequency. Despite the low integration efficiency, recent reports of retroviral insertional mutagenesis in mice and two human subjects have raised concerns about the potential for rAAV2-mediated insertional mutagenesis. Here we characterize rAAV2-targeted chromosomal integration sites isolated from selected or non-selected hepatocytes in vector-injected mouse livers. We document frequent chromosomal deletions of up to 2 kb at integration sites (14 of 14 integrations, 100%; most of the deletions were <0.3 kb) and preferred integration into genes (21 of 29 integrations, 72%). In addition, all of the targeted genes analyzed (20 of 20 targeted genes, 100%) were expressed in the liver. This is the first report to our knowledge on host chromosomal effects of rAAV2 integration in animals, and it provides insights into the nature of rAAV2 vector integration into chromosomes in quiescent somatic cells in animals and human subjects.


Journal of Virology | 2008

In Vitro and In Vivo Gene Therapy Vector Evolution via Multispecies Interbreeding and Retargeting of Adeno-Associated Viruses†

Dirk Grimm; Joyce S. Lee; Lora Wang; Tushar J. Desai; Bassel Akache; Theresa A. Storm; Mark A. Kay

ABSTRACT Adeno-associated virus (AAV) serotypes differ broadly in transduction efficacies and tissue tropisms and thus hold enormous potential as vectors for human gene therapy. In reality, however, their use in patients is restricted by prevalent anti-AAV immunity or by their inadequate performance in specific targets, exemplified by the AAV type 2 (AAV-2) prototype in the liver. Here, we attempted to merge desirable qualities of multiple natural AAV isolates by an adapted DNA family shuffling technology to create a complex library of hybrid capsids from eight different wild-type viruses. Selection on primary or transformed human hepatocytes yielded pools of hybrids from five of the starting serotypes: 2, 4, 5, 8, and 9. More stringent selection with pooled human antisera (intravenous immunoglobulin [IVIG]) then led to the selection of a single type 2/type 8/type 9 chimera, AAV-DJ, distinguished from its closest natural relative (AAV-2) by 60 capsid amino acids. Recombinant AAV-DJ vectors outperformed eight standard AAV serotypes in culture and greatly surpassed AAV-2 in livers of naïve and IVIG-immunized mice. A heparin binding domain in AAV-DJ was found to limit biodistribution to the liver (and a few other tissues) and to affect vector dose response and antibody neutralization. Moreover, we report the first successful in vivo biopanning of AAV capsids by using a new AAV-DJ-derived viral peptide display library. Two peptides enriched after serial passaging in mouse lungs mediated the retargeting of AAV-DJ vectors to distinct alveolar cells. Our study validates DNA family shuffling and viral peptide display as two powerful and compatible approaches to the molecular evolution of novel AAV vectors for human gene therapy applications.


Journal of Virology | 2005

Unrestricted Hepatocyte Transduction with Adeno-Associated Virus Serotype 8 Vectors in Mice

Hiroyuki Nakai; Sally Fuess; Theresa A. Storm; Shin-ichi Muramatsu; Yuko Nara; Mark A. Kay

ABSTRACT Recombinant adeno-associated virus (rAAV) vectors can mediate long-term stable transduction in various target tissues. However, with rAAV serotype 2 (rAAV2) vectors, liver transduction is confined to only a small portion of hepatocytes even after administration of extremely high vector doses. In order to investigate whether rAAV vectors of other serotypes exhibit similar restricted liver transduction, we performed a dose-response study by injecting mice with β-galactosidase-expressing rAAV1 and rAAV8 vectors via the portal vein. The rAAV1 vector showed a blunted dose-response similar to that of rAAV2 at high doses, while the rAAV8 vector dose-response remained unchanged at any dose and ultimately could transduce all the hepatocytes at a dose of 7.2 × 1012 vector genomes/mouse without toxicity. This indicates that all hepatocytes have the ability to process incoming single-stranded vector genomes into duplex DNA. A single tail vein injection of the rAAV8 vector was as efficient as portal vein injection at any dose. In addition, intravascular administration of the rAAV8 vector at a high dose transduced all the skeletal muscles throughout the body, including the diaphragm, the entire cardiac muscle, and substantial numbers of cells in the pancreas, smooth muscles, and brain. Thus, rAAV8 is a robust vector for gene transfer to the liver and provides a promising research tool for delivering genes to various target organs. In addition, the rAAV8 vector may offer a potential therapeutic agent for various diseases affecting nonhepatic tissues, but great caution is required for vector spillover and tight control of tissue-specific gene expression.


Molecular Therapy | 2008

Expression of shRNA From a Tissue-specific pol II Promoter Is an Effective and Safe RNAi Therapeutic

Jeffery C. Giering; Dirk Grimm; Theresa A. Storm; Mark A. Kay

It has been observed that overexpression of some short-hairpin RNAs (shRNAs) can induce acute cytotoxicity. This has raised concerns about the safety of using RNA interference (RNAi) technology as a potential therapeutic tool. We have sought to address this challenge of expression control by developing a mono-cistronic vector for the tissue-specific expression of an shRNA from a liver-derived polymerase (pol) II promoter. This new construct efficiently induces target silencing in hepatoma cells in vitro and in mouse livers in vivo. In order to demonstrate the therapeutic potential and improved safety of this approach, we selected an shRNA targeting the envelope surface antigen (sAg) of hepatitis B virus (HBV), which is among the most toxic when expressed from the commonly used U6 promoter. Packaging it as a double-stranded DNA into an adeno-associated virus (AAV) pseudotype 8 and delivering it at a high particle dose (1 x 10(12)) to HBV transgenic mice resulted in the stable reduction of serum sAg to 85% of starting levels, without any concomitant sign of liver damage. With this improved tolerability, the liver-specific pol II shRNA expression persisted for more than one year after the injection. We conclude that this pol II shRNA expression system combined with a potent delivery vector represents an effective alternative to either U6-based strategies or systems that achieve tissue specificity through the use of additional elements.


Nature Biotechnology | 2000

Increasing the size of rAAV-mediated expression cassettes in vivo by intermolecular joining of two complementary vectors.

Hiroyuki Nakai; Theresa A. Storm; Mark A. Kay

A major shortcoming to the use of adeno-associated virus (rAAV) vectors is their limited packaging size. To overcome this hurdle, we split an expression cassette and cloned it into two separate vectors. The vectors contained either a nuclear localizing Escherichia coli lacZ transgene (nlslacZ) with a splice acceptor, or the human elongation factor 1α (EF1α) gene enhancer/promoter(s) (EF1αEP) with a splice donor. We co-injected a promoter-less nlslacZ vector with a vector containing either a single EF1αEP or a double copy of the EF1αEP in a head-to-head orientation, into the portal vein of mice. Gene expression, measured by both transduction efficiency and quantitation of the recombinant protein, was as much as 60–70% of that obtained from mice that received a single vector containing a complete EFαEP/nlslacZ expression cassette. This two-vector approach may allow development of gene therapy strategies that will carry exogenous DNA sequences with large therapeutic cDNAs and/or regulatory elements.


Journal of Virology | 2000

Recruitment of Single-Stranded Recombinant Adeno-Associated Virus Vector Genomes and Intermolecular Recombination Are Responsible for Stable Transduction of Liver In Vivo

Hiroyuki Nakai; Theresa A. Storm; Mark A. Kay

ABSTRACT Recombinant adeno-associated virus (rAAV) vectors stably transduce hepatocytes in experimental animals. Following portal-vein administration of rAAV vectors in vivo, single-stranded (ss) rAAV genomes become double stranded (ds), circularized, and/or concatemerized concomitant with a slow rise and, eventually, steady-state levels of transgene expression. Over time, at least some of the stabilized genomes become integrated into mouse chromosomal DNA. The mechanism(s) of formation of stable ds rAAV genomes from input ss DNA molecules has not been delineated, although second-strand synthesis and genome amplification by a rolling-circle model has been proposed. To begin to delineate a mechanism, we produced rAAV vectors in the presence of bacterial PaeR7 or Dam methyltransferase or constructed rAAV vectors labeled with different restriction enzyme recognition sites and introduced them into mouse hepatocytes in vivo. A series of molecular analyses demonstrated that second-strand synthesis and rolling-circle replication did not appear to be the major processes involved in the formation of stable ds rAAV genomes. Rather, recruitment of complementary plus and minus ss genomes and subsequent random head-to-head, head-to-tail, and tail-to-tail intermolecular joining were primarily responsible for the formation of ds vector genomes. These findings contrast with the previously described mechanism(s) of transduction based on in vitro studies. Understanding the mechanistic process responsible for vector transduction may allow the development of new strategies for improving rAAV-mediated gene transfer in vivo.


Journal of Virology | 2005

Large-Scale Molecular Characterization of Adeno-Associated Virus Vector Integration in Mouse Liver

Hiroyuki Nakai; Xiaolin Wu; Sally Fuess; Theresa A. Storm; David J. Munroe; Eugenio Montini; Shawn M. Burgess; Markus Grompe; Mark A. Kay

ABSTRACT Recombinant adeno-associated virus (rAAV) vector holds promise for gene therapy. Despite a low frequency of chromosomal integration of vector genomes, recent studies have raised concerns about the risk of rAAV integration because integration occurs preferentially in genes and accompanies chromosomal deletions, which may lead to loss-of-function insertional mutagenesis. Here, by analyzing 347 rAAV integrations in mice, we elucidate novel features of rAAV integration: the presence of hot spots for integration and a strong preference for integrating near gene regulatory sequences. The most prominent hot spot was a harmless chromosomal niche in the rRNA gene repeats, whereas nearly half of the integrations landed near transcription start sites or CpG islands, suggesting the possibility of activating flanking cellular disease genes by vector integration, similar to retroviral gain-of-function insertional mutagenesis. Possible cancer-related genes were hit by rAAV integration at a frequency of 3.5%. In addition, the information about chromosomal changes at 218 integration sites and 602 breakpoints of vector genomes have provided a clue to how vector terminal repeats and host chromosomal DNA are joined in the integration process. Thus, the present study provides new insights into the risk of rAAV-mediated insertional mutagenesis and the mechanisms of rAAV integration.

Collaboration


Dive into the Theresa A. Storm's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hui Xu

Stanford University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leonard Meuse

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge