Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dirk Hockemeyer is active.

Publication


Featured researches published by Dirk Hockemeyer.


Cell | 2009

Parkinson's Disease Patient-Derived Induced Pluripotent Stem Cells Free of Viral Reprogramming Factors

Frank Soldner; Dirk Hockemeyer; Caroline Beard; Qing Gao; George W. Bell; Elizabeth G. Cook; Gunnar Hargus; Alexandra Blak; Oliver Cooper; Maisam Mitalipova; Ole Isacson; Rudolf Jaenisch

Induced pluripotent stem cells (iPSCs) derived from somatic cells of patients represent a powerful tool for biomedical research and may provide a source for replacement therapies. However, the use of viruses encoding the reprogramming factors represents a major limitation of the current technology since even low vector expression may alter the differentiation potential of the iPSCs or induce malignant transformation. Here, we show that fibroblasts from five patients with idiopathic Parkinsons disease can be efficiently reprogrammed and subsequently differentiated into dopaminergic neurons. Moreover, we derived hiPSCs free of reprogramming factors using Cre-recombinase excisable viruses. Factor-free hiPSCs maintain a pluripotent state and show a global gene expression profile, more closely related to hESCs than to hiPSCs carrying the transgenes. Our results indicate that residual transgene expression in virus-carrying hiPSCs can affect their molecular characteristics and that factor-free hiPSCs therefore represent a more suitable source of cells for modeling of human disease.


Nature Biotechnology | 2011

Genetic engineering of human pluripotent cells using TALE nucleases

Dirk Hockemeyer; Haoyi Wang; Samira Kiani; Christine S. Lai; Qing Gao; John P. Cassady; Gregory J. Cost; Lei Zhang; Yolanda Santiago; Jeffrey C. Miller; Bryan Zeitler; Jennifer M. Cherone; Xiangdong Meng; Sarah J. Hinkley; Edward J. Rebar; Philip D. Gregory; Fyodor D. Urnov; Rudolf Jaenisch

Targeted genetic engineering of human pluripotent cells is a prerequisite for exploiting their full potential. Such genetic manipulations can be achieved using site-specific nucleases. Here we engineered transcription activator–like effector nucleases (TALENs) for five distinct genomic loci. At all loci tested we obtained human embryonic stem cell (ESC) and induced pluripotent stem cell (iPSC) clones carrying transgenic cassettes solely at the TALEN-specified location. Our data suggest that TALENs employing the specific architectures described here mediate site-specific genome modification in human pluripotent cells with similar efficiency and precision as do zinc-finger nucleases (ZFNs).


Nature Biotechnology | 2009

Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases

Dirk Hockemeyer; Frank Soldner; Caroline Beard; Qing Gao; Maisam Mitalipova; Russell DeKelver; George E. Katibah; Ranier Amora; Elizabeth A. Boydston; Bryan Zeitler; Xiangdong Meng; Jeffrey C. Miller; Lei Zhang; Edward J. Rebar; Philip D. Gregory; Fyodor D. Urnov; Rudolf Jaenisch

Realizing the full potential of human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) requires efficient methods for genetic modification. However, techniques to generate cell type–specific lineage reporters, as well as reliable tools to disrupt, repair or overexpress genes by gene targeting, are inefficient at best and thus are not routinely used. Here we report the highly efficient targeting of three genes in human pluripotent cells using zinc-finger nuclease (ZFN)–mediated genome editing. First, using ZFNs specific for the OCT4 (POU5F1) locus, we generated OCT4-eGFP reporter cells to monitor the pluripotent state of hESCs. Second, we inserted a transgene into the AAVS1 locus to generate a robust drug-inducible overexpression system in hESCs. Finally, we targeted the PITX3 gene, demonstrating that ZFNs can be used to generate reporter cells by targeting non-expressed genes in hESCs and hiPSCs.


Cell | 2009

Mammalian Telomeres Resemble Fragile Sites and Require TRF1 for Efficient Replication

Agnel Sfeir; Settapong Kosiyatrakul; Dirk Hockemeyer; Sheila L. MacRae; Jan Karlseder; Carl L. Schildkraut; Titia de Lange

Telomeres protect chromosome ends through the interaction of telomeric repeats with shelterin, a protein complex that represses DNA damage signaling and DNA repair reactions. The telomeric repeats are maintained by telomerase, which solves the end replication problem. We report that the TTAGGG repeat arrays of mammalian telomeres pose a challenge to the DNA replication machinery, giving rise to replication-dependent defects that resemble those of aphidicolin-induced common fragile sites. Gene deletion experiments showed that efficient duplication of telomeres requires the shelterin component TRF1. Without TRF1, telomeres activate the ATR kinase in S phase and show a fragile-site phenotype in metaphase. Single-molecule analysis of replicating telomeres showed that TRF1 promotes efficient replication of TTAGGG repeats and prevents fork stalling. Two helicases implicated in the removal of G4 DNA structures, BLM and RTEL1, were required to repress the fragile-telomere phenotype. These results identify a second telomere replication problem that is solved by the shelterin component TRF1.


Cell | 2011

Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations

Frank Soldner; Josee Laganiere; Albert W. Cheng; Dirk Hockemeyer; Qing Gao; Raaji K. Alagappan; Vikram Khurana; Lawrence I. Golbe; Richard H. Myers; Susan Lindquist; Lei Zhang; Dmitry Guschin; Lauren K. Fong; B. Joseph Vu; Xiangdong Meng; Fyodor D. Urnov; Edward J. Rebar; Philip D. Gregory; H. Steve Zhang; Rudolf Jaenisch

Patient-specific induced pluripotent stem cells (iPSCs) derived from somatic cells provide a unique tool for the study of human disease, as well as a promising source for cell replacement therapies. One crucial limitation has been the inability to perform experiments under genetically defined conditions. This is particularly relevant for late age onset disorders in which in vitro phenotypes are predicted to be subtle and susceptible to significant effects of genetic background variations. By combining zinc finger nuclease (ZFN)-mediated genome editing and iPSC technology, we provide a generally applicable solution to this problem, generating sets of isogenic disease and control human pluripotent stem cells that differ exclusively at either of two susceptibility variants for Parkinsons disease by modifying the underlying point mutations in the α-synuclein gene. The robust capability to genetically correct disease-causing point mutations in patient-derived hiPSCs represents significant progress for basic biomedical research and an advance toward hiPSC-based cell replacement therapies.


Nature | 2004

Myocardin and ternary complex factors compete for SRF to control smooth muscle gene expression

Zhigao Wang; Da-Zhi Wang; Dirk Hockemeyer; John McAnally; Alfred Nordheim; Eric N. Olson

Smooth muscle cells switch between differentiated and proliferative phenotypes in response to extracellular cues, but the transcriptional mechanisms that confer such phenotypic plasticity remain unclear. Serum response factor (SRF) activates genes involved in smooth muscle differentiation and proliferation by recruiting muscle-restricted cofactors, such as the transcriptional coactivator myocardin, and ternary complex factors (TCFs) of the ETS-domain family, respectively. Here we show that growth signals repress smooth muscle genes by triggering the displacement of myocardin from SRF by Elk-1, a TCF that acts as a myogenic repressor. The opposing influences of myocardin and Elk-1 on smooth muscle gene expression are mediated by structurally related SRF-binding motifs that compete for a common docking site on SRF. A mutant smooth muscle promoter, retaining responsiveness to myocardin and SRF but defective in TCF binding, directs ectopic transcription in the embryonic heart, demonstrating a role for TCFs in suppression of smooth muscle gene expression in vivo. We conclude that growth and developmental signals modulate smooth muscle gene expression by regulating the association of SRF with antagonistic cofactors.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Potentiation of serum response factor activity by a family of myocardin-related transcription factors.

Da-Zhi Wang; Shijie Li; Dirk Hockemeyer; Lillian B. Sutherland; Zhigao Wang; Gerhard Schratt; James A. Richardson; Alfred Nordheim; Eric N. Olson

Myocardin is a SAP (SAF-A/B, Acinus, PIAS) domain transcription factor that associates with serum response factor (SRF) to potently enhance SRF-dependent transcription. Here we describe two myocardin-related transcription factors (MRTFs), A and B, that also interact with SRF and stimulate its transcriptional activity. Whereas myocardin is expressed specifically in cardiac and smooth muscle cells, MRTF-A and -B are expressed in numerous embryonic and adult tissues. In SRF-deficient embryonic stem cells, myocardin and MRTFs are unable to activate SRF-dependent reporter genes, confirming their dependence on SRF. Myocardin and MRTFs comprise a previously uncharacterized family of SRF cofactors with the potential to modulate SRF target genes in a wide range of tissues.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Differentiated Parkinson patient-derived induced pluripotent stem cells grow in the adult rodent brain and reduce motor asymmetry in Parkinsonian rats

Gunnar Hargus; Oliver Cooper; Michela Deleidi; Adam Levy; Kristen Lee; Elizabeth Marlow; Alyssa Yow; Frank Soldner; Dirk Hockemeyer; Penelope J. Hallett; Teresia Osborn; Rudolf Jaenisch; Ole Isacson

Recent advances in deriving induced pluripotent stem (iPS) cells from patients offer new possibilities for biomedical research and clinical applications, as these cells could be used for autologous transplantation. We differentiated iPS cells from patients with Parkinsons disease (PD) into dopaminergic (DA) neurons and show that these DA neurons can be transplanted without signs of neurodegeneration into the adult rodent striatum. The PD patient iPS (PDiPS) cell-derived DA neurons survived at high numbers, showed arborization, and mediated functional effects in an animal model of PD as determined by reduction of amphetamine- and apomorphine-induced rotational asymmetry, but only a few DA neurons projected into the host striatum at 16 wk after transplantation. We next applied FACS for the neural cell adhesion molecule NCAM on differentiated PDiPS cells before transplantation, which resulted in surviving DA neurons with functional effects on amphetamine-induced rotational asymmetry in a 6-OHDA animal model of PD. Morphologically, we found that PDiPS cell-derived non-DA neurons send axons along white matter tracts into specific close and remote gray matter target areas in the adult brain. Such findings establish the transplantation of human PDiPS cell-derived neurons as a long-term in vivo method to analyze potential disease-related changes in a physiological context. Our data also demonstrate proof of principle of survival and functional effects of PDiPS cell-derived DA neurons in an animal model of PD and encourage further development of differentiation protocols to enhance growth and function of implanted PDiPS cell-derived DA neurons in regard to potential therapeutic applications.


Cell Stem Cell | 2010

Chromatin Structure and Gene Expression Programs of Human Embryonic and Induced Pluripotent Stem Cells

Matthew G. Guenther; Garrett M. Frampton; Frank Soldner; Dirk Hockemeyer; Maya Mitalipova; Rudolf Jaenisch; Richard A. Young

Knowledge of both the global chromatin structure and the gene expression programs of human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) should provide a robust means to assess whether the genomes of these cells have similar pluripotent states. Recent studies have suggested that ESCs and iPSCs represent different pluripotent states with substantially different gene expression profiles. We describe here a comparison of global chromatin structure and gene expression data for a panel of human ESCs and iPSCs. Genome-wide maps of nucleosomes with histone H3K4me3 and H3K27me3 modifications indicate that there is little difference between ESCs and iPSCs with respect to these marks. Gene expression profiles confirm that the transcriptional programs of ESCs and iPSCs show very few consistent differences. Although some variation in chromatin structure and gene expression was observed in these cell lines, these variations did not serve to distinguish ESCs from iPSCs.


Cell | 2006

Recent Expansion of the Telomeric Complex in Rodents: Two Distinct POT1 Proteins Protect Mouse Telomeres

Dirk Hockemeyer; Jan-Peter Daniels; Hiroyuki Takai; Titia de Lange

Human telomeres are protected by shelterin, a complex that includes the POT1 single-stranded DNA binding protein. We found that mouse telomeres contain two POT1 paralogs, POT1a and POT1b, and we used conditional deletion to determine their function. Double-knockout cells showed that POT1a/b are required to prevent a DNA damage signal at chromosome ends, endoreduplication, and senescence. In contrast, POT1a/b were largely dispensable for repression of telomere fusions. Single knockouts and complementation experiments revealed that POT1a and POT1b have distinct functions. POT1a, but not POT1b, was required to repress a DNA damage signal at telomeres. Conversely, POT1b, but not POT1a, had the ability to regulate the amount of single-stranded DNA at the telomere terminus. We conclude that mouse telomeres require two distinct POT1 proteins whereas human telomeres have one. Such divergence is unprecedented in mammalian chromosome biology and has implications for modeling human telomere biology in mice.

Collaboration


Dive into the Dirk Hockemeyer's collaboration.

Top Co-Authors

Avatar

Rudolf Jaenisch

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Qing Gao

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Frank Soldner

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge