Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiangdong Meng is active.

Publication


Featured researches published by Xiangdong Meng.


Nature Biotechnology | 2011

A TALE nuclease architecture for efficient genome editing

Jeffrey C. Miller; Siyuan Tan; Guijuan Qiao; Kyle A Barlow; Jianbin Wang; Danny F Xia; Xiangdong Meng; David Paschon; Elo Leung; Sarah J. Hinkley; Gladys P Dulay; Kevin L. Hua; Irina Ankoudinova; Gregory J. Cost; Fyodor D. Urnov; H. Steve Zhang; Michael C. Holmes; Lei Zhang; Philip D. Gregory; Edward J. Rebar

Nucleases that cleave unique genomic sequences in living cells can be used for targeted gene editing and mutagenesis. Here we develop a strategy for generating such reagents based on transcription activator–like effector (TALE) proteins from Xanthomonas. We identify TALE truncation variants that efficiently cleave DNA when linked to the catalytic domain of FokI and use these nucleases to generate discrete edits or small deletions within endogenous human NTF3 and CCR5 genes at efficiencies of up to 25%. We further show that designed TALEs can regulate endogenous mammalian genes. These studies demonstrate the effective application of designed TALE transcription factors and nucleases for the targeted regulation and modification of endogenous genes.


Nature Biotechnology | 2011

Genetic engineering of human pluripotent cells using TALE nucleases

Dirk Hockemeyer; Haoyi Wang; Samira Kiani; Christine S. Lai; Qing Gao; John P. Cassady; Gregory J. Cost; Lei Zhang; Yolanda Santiago; Jeffrey C. Miller; Bryan Zeitler; Jennifer M. Cherone; Xiangdong Meng; Sarah J. Hinkley; Edward J. Rebar; Philip D. Gregory; Fyodor D. Urnov; Rudolf Jaenisch

Targeted genetic engineering of human pluripotent cells is a prerequisite for exploiting their full potential. Such genetic manipulations can be achieved using site-specific nucleases. Here we engineered transcription activator–like effector nucleases (TALENs) for five distinct genomic loci. At all loci tested we obtained human embryonic stem cell (ESC) and induced pluripotent stem cell (iPSC) clones carrying transgenic cassettes solely at the TALEN-specified location. Our data suggest that TALENs employing the specific architectures described here mediate site-specific genome modification in human pluripotent cells with similar efficiency and precision as do zinc-finger nucleases (ZFNs).


Nature Biotechnology | 2009

Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases

Dirk Hockemeyer; Frank Soldner; Caroline Beard; Qing Gao; Maisam Mitalipova; Russell DeKelver; George E. Katibah; Ranier Amora; Elizabeth A. Boydston; Bryan Zeitler; Xiangdong Meng; Jeffrey C. Miller; Lei Zhang; Edward J. Rebar; Philip D. Gregory; Fyodor D. Urnov; Rudolf Jaenisch

Realizing the full potential of human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) requires efficient methods for genetic modification. However, techniques to generate cell type–specific lineage reporters, as well as reliable tools to disrupt, repair or overexpress genes by gene targeting, are inefficient at best and thus are not routinely used. Here we report the highly efficient targeting of three genes in human pluripotent cells using zinc-finger nuclease (ZFN)–mediated genome editing. First, using ZFNs specific for the OCT4 (POU5F1) locus, we generated OCT4-eGFP reporter cells to monitor the pluripotent state of hESCs. Second, we inserted a transgene into the AAVS1 locus to generate a robust drug-inducible overexpression system in hESCs. Finally, we targeted the PITX3 gene, demonstrating that ZFNs can be used to generate reporter cells by targeting non-expressed genes in hESCs and hiPSCs.


Science | 2009

Knockout Rats via Embryo Microinjection of Zinc-Finger Nucleases

Aron M. Geurts; Gregory J. Cost; Yevgeniy Freyvert; Bryan Zeitler; Jeffrey C. Miller; Vivian M. Choi; Shirin S. Jenkins; Adam Wood; Xiaoxia Cui; Xiangdong Meng; Anna I Vincent; Stephen Lam; Mieczyslaw Michalkiewicz; Rebecca Schilling; Jamie Foeckler; Shawn Kalloway; Hartmut Weiler; Séverine Ménoret; Ignacio Anegon; Gregory D. Davis; Lei Zhang; Edward J. Rebar; Philip D. Gregory; Fyodor D. Urnov; Howard J. Jacob; Roland Buelow

Targeted gene disruption in rats paves the way for new human disease models. The toolbox of rat genetics currently lacks the ability to introduce site-directed, heritable mutations into the genome to create knockout animals. By using engineered zinc-finger nucleases (ZFNs) designed to target an integrated reporter and two endogenous rat genes, Immunoglobulin M (IgM) and Rab38, we demonstrate that a single injection of DNA or messenger RNA encoding ZFNs into the one-cell rat embryo leads to a high frequency of animals carrying 25 to 100% disruption at the target locus. These mutations are faithfully and efficiently transmitted through the germline. Our data demonstrate the feasibility of targeted gene disruption in multiple rat strains within 4 months time, paving the way to a humanized monoclonal antibody platform and additional human disease models.


Nature | 2009

Precise genome modification in the crop species Zea mays using zinc-finger nucleases

Vipula K. Shukla; Yannick Doyon; Jeffrey C. Miller; Russell DeKelver; Erica A. Moehle; Sarah E. Worden; Jon C. Mitchell; Nicole L. Arnold; Sunita Gopalan; Xiangdong Meng; Vivian M. Choi; Jeremy M. Rock; Ying-Ying Wu; George E. Katibah; Gao Zhifang; David McCaskill; Matthew Simpson; Beth Blakeslee; Scott A. Greenwalt; Holly Butler; Sarah J. Hinkley; Lei Zhang; Edward J. Rebar; Philip D. Gregory; Fyodor Urnov

Agricultural biotechnology is limited by the inefficiencies of conventional random mutagenesis and transgenesis. Because targeted genome modification in plants has been intractable, plant trait engineering remains a laborious, time-consuming and unpredictable undertaking. Here we report a broadly applicable, versatile solution to this problem: the use of designed zinc-finger nucleases (ZFNs) that induce a double-stranded break at their target locus. We describe the use of ZFNs to modify endogenous loci in plants of the crop species Zea mays. We show that simultaneous expression of ZFNs and delivery of a simple heterologous donor molecule leads to precise targeted addition of an herbicide-tolerance gene at the intended locus in a significant number of isolated events. ZFN-modified maize plants faithfully transmit these genetic changes to the next generation. Insertional disruption of one target locus, IPK1, results in both herbicide tolerance and the expected alteration of the inositol phosphate profile in developing seeds. ZFNs can be used in any plant species amenable to DNA delivery; our results therefore establish a new strategy for plant genetic manipulation in basic science and agricultural applications.


Cell | 2011

Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations

Frank Soldner; Josee Laganiere; Albert W. Cheng; Dirk Hockemeyer; Qing Gao; Raaji K. Alagappan; Vikram Khurana; Lawrence I. Golbe; Richard H. Myers; Susan Lindquist; Lei Zhang; Dmitry Guschin; Lauren K. Fong; B. Joseph Vu; Xiangdong Meng; Fyodor D. Urnov; Edward J. Rebar; Philip D. Gregory; H. Steve Zhang; Rudolf Jaenisch

Patient-specific induced pluripotent stem cells (iPSCs) derived from somatic cells provide a unique tool for the study of human disease, as well as a promising source for cell replacement therapies. One crucial limitation has been the inability to perform experiments under genetically defined conditions. This is particularly relevant for late age onset disorders in which in vitro phenotypes are predicted to be subtle and susceptible to significant effects of genetic background variations. By combining zinc finger nuclease (ZFN)-mediated genome editing and iPSC technology, we provide a generally applicable solution to this problem, generating sets of isogenic disease and control human pluripotent stem cells that differ exclusively at either of two susceptibility variants for Parkinsons disease by modifying the underlying point mutations in the α-synuclein gene. The robust capability to genetically correct disease-causing point mutations in patient-derived hiPSCs represents significant progress for basic biomedical research and an advance toward hiPSC-based cell replacement therapies.


Nature Biotechnology | 2011

Knockout rats generated by embryo microinjection of TALENs.

Laurent Tesson; Claire Usal; Séverine Ménoret; Elo Leung; Brett J Niles; Séverine Rémy; Yolanda Santiago; Anna I Vincent; Xiangdong Meng; Lei Zhang; Philip D. Gregory; Ignacio Anegon; Gregory J. Cost

1. Holtz, W.J. & Keasling J.D. Engineering static and dynamic control of synthetic pathways. Cell 140, 19– 23 (2010). 2. Gibson, D.G. et al. Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329, 52–56 (2010). 3. Thykaer, J. & nielsen, J. Metabolic engineering of b–lactam production. Metab. Eng. 5, 56–69 (2003). 4. nielsen, J. It is all about metabolic fluxes. J. Bacteriol. 185, 7031–7035 (2003). 5. Feist, A.M. & Palsson, B.O. The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli. Nat. Biotechnol. 26, 659– 667 (2008). 6. Herrgard, M.J. et al. A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology. Nat. Biotechnol. 26, 1155–1160 (2008). ACKNOWlEDGMENTS J.N. was supported in part by the Chalmers Foundation and the Knut and Alice Wallenberg Foundation. J.D.K. was supported in part by the Synthetic Biology Engineering Research Center, which is funded by National Science Foundation award no. 0540879, and by the Joint BioEnergy Institute, which is funded by the US Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231.


Science | 2011

Targeted Genome Editing Across Species Using ZFNs and TALENs

Andrew J. Wood; Te-Wen Lo; Bryan Zeitler; Catherine S. Pickle; Edward J. Ralston; Andrew H. Lee; Rainier Amora; Jeffrey C. Miller; Elo Leung; Xiangdong Meng; Lei Zhang; Edward J. Rebar; Philip D. Gregory; Fyodor D. Urnov; Barbara J Meyer

Engineered nucleases target specific DNA sequences for gene disruption in nonmodel organisms. Evolutionary studies necessary to dissect diverse biological processes have been limited by the lack of reverse genetic approaches in most organisms with sequenced genomes. We established a broadly applicable strategy using zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) for targeted disruption of endogenous genes and cis-acting regulatory elements in diverged nematode species.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases

Janet Hauschild; Bjoern Petersen; Yolanda Santiago; Anna-Lisa Queisser; Joseph Wallace Carnwath; Andrea Lucas-Hahn; Lei Zhang; Xiangdong Meng; Philip D. Gregory; Reinhard Schwinzer; Gregory J. Cost; Heiner Niemann

Zinc-finger nucleases (ZFNs) are powerful tools for producing gene knockouts (KOs) with high efficiency. Whereas ZFN-mediated gene disruption has been demonstrated in laboratory animals such as mice, rats, and fruit flies, ZFNs have not been used to disrupt an endogenous gene in any large domestic species. Here we used ZFNs to induce a biallelic knockout of the porcine α1,3-galactosyltransferase (GGTA1) gene. Primary porcine fibroblasts were treated with ZFNs designed against the region coding for the catalytic core of GGTA1, resulting in biallelic knockout of ∼1% of ZFN-treated cells. A galactose (Gal) epitope counter-selected population of these cells was used in somatic cell nuclear transfer (SCNT). Of the resulting six fetuses, all completely lacked Gal epitopes and were phenotypically indistinguishable from the starting donor cell population, illustrating that ZFN-mediated genetic modification did not interfere with the cloning process. Neither off-target cleavage events nor integration of the ZFN-coding plasmid was detected. The GGTA1-KO phenotype was confirmed by a complement lysis assay that demonstrated protection of GGTA1-KO fibroblasts relative to wild-type cells. Cells from GGTA1-KO fetuses and pooled, transfected cells were used to produce live offspring via SCNT. This study reports the production of cloned pigs carrying a biallelic ZFN-induced knockout of an endogenous gene. These findings open a unique avenue toward the creation of gene KO pigs, which could benefit both agriculture and biomedicine.


Nature Cell Biology | 2009

Identification of chromosome sequence motifs that mediate meiotic pairing and synapsis in C. elegans.

Carolyn M. Phillips; Xiangdong Meng; Lei Zhang; Jacqueline H. Chretien; Fyodor D. Urnov; Abby F. Dernburg

Caenorhabditis elegans chromosomes contain specialized regions called pairing centres, which mediate homologous pairing and synapsis during meiosis. Four related proteins, ZIM-1, 2, 3 and HIM-8, associate with these sites and are required for their essential functions. Here we show that short sequence elements enriched in the corresponding chromosome regions selectively recruit these proteins in vivo. In vitro analysis using SELEX indicates that the binding specificity of each protein arises from a combination of two zinc fingers and an adjacent domain. Insertion of a cluster of recruiting motifs into a chromosome lacking its endogenous pairing centre is sufficient to restore homologous pairing, synapsis, crossover recombination and segregation. These findings help to illuminate how chromosome sites mediate essential aspects of meiotic chromosome dynamics.

Collaboration


Dive into the Xiangdong Meng's collaboration.

Top Co-Authors

Avatar

Lei Zhang

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rudolf Jaenisch

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qing Gao

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge