Dirk Rosenthal
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dirk Rosenthal.
Nature Materials | 2012
Marc Armbrüster; Kirill Kovnir; Matthias Friedrich; Detre Teschner; Gregor Wowsnick; M. Hahne; Peter Gille; L. Szentmiklósi; M. Feuerbacher; Marc Heggen; Frank Girgsdies; Dirk Rosenthal; Robert Schlögl; Yuri Grin
Replacing noble metals in heterogeneous catalysts by low-cost substitutes has driven scientific and industrial research for more than 100 years. Cheap and ubiquitous iron is especially desirable, because it does not bear potential health risks like, for example, nickel. To purify the ethylene feed for the production of polyethylene, the semi-hydrogenation of acetylene is applied (80 × 10(6) tons per annum; refs 1-3). The presence of small and separated transition-metal atom ensembles (so-called site-isolation), and the suppression of hydride formation are beneficial for the catalytic performance. Iron catalysts necessitate at least 50 bar and 100 °C for the hydrogenation of unsaturated C-C bonds, showing only limited selectivity towards semi-hydrogenation. Recent innovation in catalytic semi-hydrogenation is based on computational screening of substitutional alloys to identify promising metal combinations using scaling functions and the experimental realization of the site-isolation concept employing structurally well-ordered and in situ stable intermetallic compounds of Ga with Pd (refs 15-19). The stability enables a knowledge-based development by assigning the observed catalytic properties to the crystal and electronic structures of the intermetallic compounds. Following this approach, we identified the low-cost and environmentally benign intermetallic compound Al(13)Fe(4) as an active and selective semi-hydrogenation catalyst. This knowledge-based development might prove applicable to a wide range of heterogeneously catalysed reactions.
Chemcatchem | 2012
Marc Armbrüster; Malte Behrens; Fabrizio Cinquini; Karin Föttinger; Yuri Grin; Andreas Haghofer; Bernhard Klötzer; Axel Knop-Gericke; Harald Lorenz; Antje Ota; Simon Penner; Jan Prinz; Christoph Rameshan; Zsolt Révay; Dirk Rosenthal; Günther Rupprechter; Philippe Sautet; Robert Schlögl; Lidong Shao; L. Szentmiklósi; Detre Teschner; Daniel Torres; Ronald Wagner; Roland Widmer; Gregor Wowsnick
Discussed are the recent experimental and theoretical results on palladium‐based catalysts for selective hydrogenation of alkynes obtained by a number of collaborating groups in a joint multi‐method and multi‐material approach. The critical modification of catalytically active Pd surfaces by incorporation of foreign species X into the sub‐surface of Pd metal was observed by in situ spectroscopy for X=H, C under hydrogenation conditions. Under certain conditions (low H2 partial pressure) alkyne fragmentation leads to formation of a PdC surface phase in the reactant gas feed. The insertion of C as a modifier species in the sub‐surface increases considerably the selectivity of alkyne semi‐hydrogenation over Pd‐based catalysts through the decoupling of bulk hydrogen from the outmost active surface layer. DFT calculations confirm that PdC hinders the diffusion of hydridic hydrogen. Its formation is dependent on the chemical potential of carbon (reactant partial pressure) and is suppressed when the hydrogen/alkyne pressure ratio is high, which leads to rather unselective hydrogenation over in situ formed bulk PdH. The beneficial effect of the modifier species X on the selectivity, however, is also present in intermetallic compounds with X=Ga. As a great advantage, such PdxGay catalysts show extended stability under in situ conditions. Metallurgical, clean samples were used to determine the intrinsic catalytic properties of PdGa and Pd3Ga7. For high performance catalysts, supported nanostructured intermetallic compounds are more preferable and partial reduction of Ga2O3, upon heating of Pd/Ga2O3 in hydrogen, was shown to lead to formation of PdGa intermetallic compounds at moderate temperatures. In this way, Pd5Ga2 and Pd2Ga are accessible in the form of supported nanoparticles, in thin film models, and realistic powder samples, respectively.
Langmuir | 2012
Dirk Rosenthal; Roland Widmer; Ronald Wagner; Peter Gille; Marc Armbrüster; Yuri Grin; Robert Schlögl; Oliver Gröning
The intermetallic PdGa is a highly selective and potent catalyst in the semihydrogenation of acetylene, which is attributed to the surface stability and isolated Pd atom ensembles. In this context PdGa single crystals of form B with (111) orientation were investigated by means of X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), scanning tunneling microscopy (STM), X-ray photoelectron diffraction (XPD), and low-energy electron diffraction (LEED) to study the electronic and geometric properties of this surface. UPS and thermal desorption spectroscopy (TDS) were used to probe the chemisorption behavior of CO. The PdGa(111) surface exhibits a (1 × 1) LEED and a pronounced XPD pattern indicating an unreconstructed bulk-truncated surface. Low-temperature STM reveals a smooth surface with a (1 × 1) unit cell. No segregation occurs, and no impurities are detected by XPS. The electronic structure and the CO adsorption properties reveal PdGa(111) to be a bulk-truncated intermetallic compound with Pd-Ga partial covalent bonding.
Astronomy and Astrophysics | 2002
E. González-Alfonso; Christopher M. Wright; J. Cernicharo; Dirk Rosenthal; A. M. S. Boonman; E. F. van Dishoeck
ISO/SWS observations of Orion Peak 1 and Peak 2 show strong emission in the ro-vibrational lines of CO v =1 0 at 4.45{4.95 ma nd of H 2O 2 =1 0 at 6.3{7.0 m. Toward Peak 1 the total flux in both bands is, assuming isotropic emission,2.4 and0.53 L, respectively. This corresponds to14 and3% of the total H2 luminosity in the same beam. Two temperature components are found to contribute to the CO emission from Peak 1/2: a warm component, with Tk = 200{400 K, and a hot component with Tk 3 10 3 K. At Peak 2 the CO flux from the warm component is similar to that observed at Peak 1, but the hot component is a factor of2 weaker. The H2 Ob and is25% stronger toward Peak 2, and seems to arise only in the warm component. The P -branch emission of both bands from the warm component is signicantly stronger than theR-branch, indicating that the line emission is optically thick. Neither thermal collisions with H2 nor with H I seem capable of explaining the strong emission from the warm component. Although the emission arises in the postshock gas, radiation from the most prominent mid-infrared sources in Orion BN/KL is most likely pumping the excited vibrational states of CO and H2O. CO column densities along the line of sight of N(CO) = 5{1010 18 cm 2 are required to explain the band shape, the flux, and the P -R-asymmetry, and beam-lling is invoked to reconcile this high N(CO) with the upper limit inferred from the H2 emission. CO is more abundant than H2O by a factor of at least 2. The density of the warm component is estimated from the H2O emission to be2 10 7 cm 3 . The CO emission from the hot component is neither satisfactorily explained in terms of non-thermal (streaming) collisions, nor by resonant scattering. Vibrational excitation through collisions with H2 for densities of3 10 8 cm 3 or, alternatively, with atomic hydrogen, with a density of at least 10 7 cm 3 , are invoked to explain simultaneously the emission from the hot component and that from the high excitation H2 lines in the same beam. A jump shock is most probably responsible for this emission. The emission from the warm component could in principle be explained in terms of a C-shock. The underabundance of H2O relative to CO could be the consequence of H2O photodissociation, but may also indicate some contribution from a jump shock to the CO warm emission.
Chemcatchem | 2015
Raoul Blume; Dirk Rosenthal; Jean-Philippe Tessonnier; Henan Li; Axel Knop-Gericke; Robert Schlögl
X‐ray photoelectron spectroscopy (XPS) is a widely used technique for characterizing the chemical and electronic properties of highly ordered carbon nanostructures, such as carbon nanotubes and graphene. However, the analysis of XPS data—in particular the C 1s region—can be complex, impeding a straightforward evaluation of the data. In this work, an overview of extrinsic and intrinsic effects that influence the C 1s XPS spectra—for example, photon broadening or carbon–catalyst interaction—of various graphitic samples is presented. Controlled manipulation of such samples is performed by annealing, sputtering, and oxygen functionalization to identify different CC bonding states and assess the impact of the manipulations on spectral line shapes and their binding energy positions. With high‐resolution XPS and XPS depth profiling, the spectral components arising from disordered carbon and surface‐defect states can be distinguished from aromatic sp2 carbon. These findings illustrate that both spectral line shapes and binding energy components must be considered in the analysis of potentially defective surfaces of carbon materials. The sp2 peak, characteristic of aromatic carbon, features a strong asymmetry that changes with the curvature of the sample surface and, thus, cannot be neglected in spectral analysis. The applied deconvolution strategy may provide a simple guideline to obtaining high‐quality fits to experimental data on the basis of a careful evaluation of experimental conditions, sample properties, and the limits of the fit procedure.
Zeitschrift für Physikalische Chemie | 2009
Dirk Rosenthal; Frank Girgsdies; Olaf Timpe; Raoul Blume; Gisela Weinberg; Detre Teschner; Robert Schlögl
Abstract The oxidation of carbon monoxide over polycrystalline ruthenium dioxide (RuO2) powder was studied in a packed-bed reactor and by bulk and surface analytical methods. Activity data were correlated with bulk phases in an in-situ X-ray diffraction (XRD) setup at atmospheric pressure. Ruthenium dioxide was pre-calcined in pure oxygen at 1073 K. At this stage RuO2 is completely inactive in the oxidation of CO. After a long induction period in the feed at 503 K RuO2 becomes active with 100% conversion, while in-situ XRD reveals no changes in the RuO2 diffraction pattern. At this stage selective roughening of apical RuO2 facets was observed by scanning electron microscopy (SEM). Seldom also single lateral facets are roughened. EDX indicated higher oxygen content in the following order: flat lateral facets > rough lateral facets > rough apical facets. Further, experiments in the packed bed reactor indicated oscillations in the CO2 formation rate. At even higher temperatures in reducing feed (533–543 K) the sample reduces to ruthenium metal according to XRD. The reduced particles exhibiting lower ignition temperature are very rough with cracks and deep star-shaped holes. An Arrhenius plot of the CO2 formation rate below the ignition temperature reveals the reduced samples to be significantly more active based on mass unit and shows lower apparent activation energy than the activated oxidized sample. Micro-spot X-ray photoelectron spectroscopy (XPS) and XPS microscopy experiments were carried out on a Ru(0001) single crystal exposed to oxygen at different temperature. Although low energy electron diffraction (LEED) images show a strong 1×1 pattern, the XPS data indicated a wide lateral inhomogeneity with different degree of oxygen dissolved in the subsurface layers. All these and the literature data are discussed in the context of different active states and transport issues, and the metastable nature of a phase mixture under conditions of high catalytic activity.
Astronomy and Astrophysics | 2003
A. M. S. Boonman; E. F. van Dishoeck; Fred Lahuis; S. D. Doty; Christopher M. Wright; Dirk Rosenthal
The infrared spectra toward Orion-IRc2, Peak 1 and Peak 2 in the 13.5-15.5m wavelength range are presented, obtained with the Short Wavelength Spectrometer on board the Infrared Space Observatory. The spectra show absorption and emission features of the vibration-rotation bands of gas-phase CO2 ,H CN, and C 2H2, respectively. Toward the deeply embedded massive young stellar object IRc2 all three bands appear in absorption, while toward the shocked region Peak 2 CO2 ,H CN, and C2H2 are seen in emission. Toward Peak 1 only CO2 has been detected in emission. Analysis of these bands shows that the absorption features toward IRc2 are characterized by excitation temperatures of175-275 K, which can be explained by an origin in the shocked plateau gas. HCN and C2H2 are only seen in absorption in the direction of IRc2, whereas the CO2 absorption is probably more widespread. The CO2 emission toward Peak 1 and 2 is best explained with excitation by infrared radiation from dust mixed with the gas in the warm component of the shock. The similarity of the CO2 emission and absorption line shapes toward IRc2, Peak 1 and Peak 2 suggests that the CO2 is located in the warm component of the shock (T 200 K) toward all three positions. The CO2 abundances of10 8 for Peak 1 and 2, and of a few times 10 7 toward IRc2 can be explained by grain mantle evaporation and/or reformation in the gas-phase after destruction by the shock. The HCN and C2H2 emission detected toward Peak 2 is narrower (T 50-150 K) and originates either in the warm component of the shock or in the extended ridge. In the case of an origin in the warm component of the shock, the low HCN and C2H2 abundances of10 9 suggest that they are destroyed by the shock or have only been in the warm gas for a short time (t< 10 4 yr). In the case of an origin in the extended ridge, the inferred abundances are much higher and do not agree with predictions from current chemical models at low temperatures.
Chemcatchem | 2013
Tongyu Wang; Jelena Jelic; Dirk Rosenthal; Karsten Reuter
We present a DFT‐based Wulff construction of the equilibrium shape of RuO2 particles in an oxygen environment. The obtained intricate variations in the crystal habit with the oxygen chemical potential allow for a detailed discussion of the dependence on the oxidising pretreatment used in recent powder catalyst studies. The analysis specifically indicates an incomplete particle shape equilibration in previously used low‐temperature calcination. Equilibrated particles could be active CO oxidation catalysts with long‐term stability in oxidising feed and then represent an interesting alternative to the previously suggested core–shell concept.
Zeitschrift für Physikalische Chemie | 2011
Dirk Rosenthal; Frank Girgsdies; Olaf Timpe; Gisela Weinberg; Robert Schlögl
Abstract CO oxidation over polycrystalline ruthenium dioxide was monitored in an in-situ XRD setup. The evolution of the bulk state of the catalyst was followed by in-situ XRD during reaction, while the surface morphology and chemical state before and after reaction were investigated by HRSEM and EDX. The commercial RuO2 powder was calcined prior reaction to ensure the formation of completely oxidized RuO2. This pre-calcined RuO2 is initially inactive in CO oxidation regardless of the CO/O2 feed ratio and requires an induction period, the length of which strongly depends whether the catalyst is diluted with boron nitride or not. After this induction period oscillations in the CO2 yield occur under O2-rich conditions only. These oscillations exhibit two time constants for the diluted catalyst, while the low frequency oscillations were not observed in the case of undiluted RuO2. Furthermore, the state of the catalyst after activation in O2-rich feed conditions differs dramatically from the state after activation in CO-rich feed conditions. Firstly, the catalyst activated in an O2-rich atmosphere remains inactive under CO-rich conditions in contrast to the catalyst activated in CO-rich conditions which is afterwards active under all feed ratios examined. Secondly, the surface morphology of the catalyst is quite different. While the apical surfaces of the RuO2 crystals become roughened upon activation in the CO-rich feed, they become facetted under O2 rich activation conditions. Therefore, we conclude that at least two different active surface states on the bulk RuO2 catalyst exist.
Astronomical Telescopes and Instrumentation | 2003
T.O. Klaassen; John H. Blok; J. Niels Hovenier; Gerd Jakob; Dirk Rosenthal; Klaas J. Wildeman
Absorbing coatings for the HIFI and PACS spectrometers aboard the Herschel platform have been developed and optically characterized. Using radiation from an optically pumped far-infrared laser at wavelengths in the 90 - 900 μm range, the specular as well as the diffuse reflection - characterized by the Bi-directional Reflection Distribution Function - have been determined. The influence of polarization has been addressed too. Moreover, the absorption of non-absorbing diffusely reflecting surfaces, to be used for integrating spheres, has been determined using a low temperature calorimetric method.