Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dirk-Sören Lühmann is active.

Publication


Featured researches published by Dirk-Sören Lühmann.


Nature | 2010

Time-resolved observation of coherent multi-body interactions in quantum phase revivals

Sebastian Will; Thorsten Best; Ulrich Schneider; Lucia Hackermüller; Dirk-Sören Lühmann; Immanuel Bloch

Interactions lie at the heart of correlated many-body quantum phases. Typically, the interactions between microscopic particles are described as two-body interactions. However, it has been shown that higher-order multi-body interactions could give rise to novel quantum phases with intriguing properties. So far, multi-body interactions have been observed as inelastic loss resonances in three- and four-body recombinations of atom–atom and atom–molecule collisions. Here we demonstrate the presence of effective multi-body interactions in a system of ultracold bosonic atoms in a three-dimensional optical lattice, emerging through virtual transitions of particles from the lowest energy band to higher energy bands. We observe such interactions up to the six-body case in time-resolved traces of quantum phase revivals, using an atom interferometric technique that allows us to precisely measure the absolute energies of atom number states at a lattice site. In addition, we show that the spectral content of these time traces can reveal the atom number statistics at a lattice site, similar to foundational experiments in cavity quantum electrodynamics that yield the statistics of a cavity photon field. Our precision measurement of multi-body interaction energies provides crucial input for the comparison of optical-lattice quantum simulators with many-body quantum theory.


Science | 2016

Experimental reconstruction of the Berry curvature in a Floquet Bloch band

Nick Fläschner; Benno S. Rem; Matthias Tarnowski; Dominik Vogel; Dirk-Sören Lühmann; K. Sengstock; Christof Weitenberg

Cold atoms do geometry Electrons in solids populate energy bands, which can be simulated in cold atom systems using optical lattices. The geometry of the corresponding wave functions determines the topological properties of the system, but getting a direct look is tricky. Fläschner et al. and Li et al. measured the detailed structure of the band wave functions in hexagonal optical lattices, one resembling a boron-nitride and the other a graphene lattice. These techniques will make it possible to explore more complex situations that include the effects of interactions. Science, this issue pp. 1091 and 1094 Berry curvature is engineered and measured in a simulated boron-nitride optical lattice filled with fermionic K atoms. Topological properties lie at the heart of many fascinating phenomena in solid-state systems such as quantum Hall systems or Chern insulators. The topology of the bands can be captured by the distribution of Berry curvature, which describes the geometry of the eigenstates across the Brillouin zone. Using fermionic ultracold atoms in a hexagonal optical lattice, we engineered the Berry curvature of the Bloch bands using resonant driving and show a full momentum-resolved measurement of the ensuing Berry curvature. Our results pave the way to explore intriguing phases of matter with interactions in topological band structures.


Reports on Progress in Physics | 2015

Non-standard Hubbard models in optical lattices: a review

Omjyoti Dutta; Mariusz Gajda; Philipp Hauke; Maciej Lewenstein; Dirk-Sören Lühmann; Boris A. Malomed; Tomasz Sowiński; Jakub Zakrzewski

Originally, the Hubbard model was derived for describing the behavior of strongly correlated electrons in solids. However, for over a decade now, variations of it have also routinely been implemented with ultracold atoms in optical lattices, allowing their study in a clean, essentially defect-free environment. Here, we review some of the vast literature on this subject, with a focus on more recent non-standard forms of the Hubbard model. After giving an introduction to standard (fermionic and bosonic) Hubbard models, we discuss briefly common models for mixtures, as well as the so-called extended Bose-Hubbard models, that include interactions between neighboring sites, next-neighbor sites, and so on. The main part of the review discusses the importance of additional terms appearing when refining the tight-binding approximation for the original physical Hamiltonian. Even when restricting the models to the lowest Bloch band is justified, the standard approach neglects the density-induced tunneling (which has the same origin as the usual on-site interaction). The importance of these contributions is discussed for both contact and dipolar interactions. For sufficiently strong interactions, the effects related to higher Bloch bands also become important even for deep optical lattices. Different approaches that aim at incorporating these effects, mainly via dressing the basis, Wannier functions with interactions, leading to effective, density-dependent Hubbard-type models, are reviewed. We discuss also examples of Hubbard-like models that explicitly involve higher p orbitals, as well as models that dynamically couple spin and orbital degrees of freedom. Finally, we review mean-field nonlinear Schrödinger models of the Salerno type that share with the non-standard Hubbard models nonlinear coupling between the adjacent sites. In that part, discrete solitons are the main subject of consideration. We conclude by listing some open problems, to be addressed in the future.


Physical Review Letters | 2009

Role of interactions in 87Rb-40K Bose-Fermi mixtures in a 3D optical lattice.

Th. Best; Sebastian Will; Ulrich Schneider; Lucia Hackermüller; D. van Oosten; Immanuel Bloch; Dirk-Sören Lühmann

We investigate the effect of interspecies interaction on a degenerate mixture of bosonic 87Rb and fermionic 40K atoms in a three-dimensional optical lattice potential. Using a Feshbach resonance, the 87Rb-40K interaction is tuned over a wide range. Through an analysis of the 87Rb momentum distribution, we find a pronounced asymmetry between strong repulsion and strong attraction. In the latter case, we observe a marked shift in the superfluid to Mott insulator transition, which we attribute to a renormalization of the Bose-Hubbard parameters due to self-trapping.


Nature Physics | 2010

Probing superfluids in optical lattices by momentum-resolved Bragg spectroscopy

P. Ernst; Sören Götze; Jasper Simon Krauser; Karsten Pyka; Dirk-Sören Lühmann; Daniela Pfannkuche; K. Sengstock

Strongly correlated many-body systems show various exciting phenomena in condensed matter physics such as high-temperature superconductivity and colossal magnetoresistance. Recently, strongly correlated phases could also be studied in ultracold quantum gases possessing analogies to solid-state physics, but moreover exhibiting new systems such as Fermi-Bose mixtures and magnetic quantum phases with high spin values. Particularly interesting systems here are quantum gases in optical lattices with fully tunable lattice and atomic interaction parameters. While in this context several concepts and ideas have already been studied theoretically and experimentally, there is still great demand for new detection techniques to explore these complex phases in detail.


Nature Physics | 2017

Observation of dynamical vortices after quenches in a system with topology

Nick Fläschner; Dominik Vogel; Matthias Tarnowski; Benno S. Rem; Dirk-Sören Lühmann; Markus Heyl; Jan Carl Budich; Ludwig Mathey; K. Sengstock; Christof Weitenberg

Topological phases constitute an exotic form of matter characterized by non-local properties rather than local order parameters1. The paradigmatic Haldane model on a hexagonal lattice features such topological phases distinguished by an integer topological invariant known as the first Chern number2. Recently, the identification of non-equilibrium signatures of topology in the dynamics of such systems has attracted particular attention3–6. Here, we experimentally study the dynamical evolution of the wavefunction using time- and momentum-resolved full state tomography for spin-polarized fermionic atoms in driven optical lattices7. We observe the appearance, movement and annihilation of dynamical vortices in momentum space after sudden quenches close to the topological phase transition. These dynamical vortices can be interpreted as dynamical Fisher zeros of the Loschmidt amplitude8, which signal a so-called dynamical phase transition9,10. Our results pave the way to a deeper understanding of the connection between topological phases and non-equilibrium dynamics.Non-equilibrium signatures of topology—the appearance, movement and annihilation of vortices in a cold-atom system—are identified, showing that topological phase can emerge dynamically from a non-topological state.Phase transitions are a fundamental concept in science describing diverse phenomena ranging from, e.g., the freezing of water to Bose-Einstein condensation. While the concept is well-established in equilibrium, similarly fundamental concepts for systems far from equilibrium are just being explored, such as the recently introduced dynamical phase transition (DPT). Here we report on the first observation of a DPT in the dynamics of a fermionic many-body state after a quench between two lattice Hamiltonians. With time-resolved state tomography in a system of ultracold atoms in optical lattices, we obtain full access to the evolution of the wave function. We observe the appearance, movement, and annihilation of vortices in reciprocal space. We identify their number as a dynamical topological order parameter, which suddenly changes its value at the critical times of the DPT. Our observation of a DPT is an important step towards a more comprehensive understanding of non-equilibrium dynamics in general.


Physical Review Letters | 2008

Self-trapping of bosons and fermions in optical lattices.

Dirk-Sören Lühmann; K. Bongs; K. Sengstock; Daniela Pfannkuche

We theoretically investigate the enhanced localization of bosonic atoms by fermionic atoms in three-dimensional optical lattices and find a self-trapping of the bosons for attractive boson-fermion interaction. Because of this mutual interaction, the fermion orbitals are substantially squeezed, which results in a strong deformation of the effective potential for bosons. This effect is enhanced by an increasing bosonic filling factor leading to a large shift of the transition between the superfluid and the Mott-insulator phase. We find a nonlinear dependency of the critical potential depth on the boson-fermion interaction strength. The results, in general, demonstrate the important role of higher Bloch bands for the physics of attractively interacting quantum gas mixtures in optical lattices and are of direct relevance to recent experiments with 87Rb-40K mixtures, where a large shift of the critical point has been found.


Nature Physics | 2012

Quantum phase transition to unconventional multi-orbital superfluidity in optical lattices

Parvis Soltan-Panahi; Dirk-Sören Lühmann; Julian Struck; Patrick Windpassinger; K. Sengstock

The behaviour of molecules and solids is governed by the interplay of electronic orbitals. Superfluidity, in contrast, is typically considered a single-orbital effect. Now, a combined experimental and theoretical study provides evidence for a multi-orbital superfluid, with a complex order parameter, occurring in a binary spin mixture of atoms trapped in an hexagonal optical lattice.


New Journal of Physics | 2012

Multi-orbital and density-induced tunneling of bosons in optical lattices

Dirk-Sören Lühmann; Ole Jürgensen; K. Sengstock

We show that multi-orbital and density-induced tunneling have a significant impact on the phase diagram of bosonic atoms in optical lattices. Off-site interactions lead to density-induced hopping, the so-called bond-charge interactions, which can be identified with an effective tunneling potential and can reach the same order of magnitude as conventional tunneling. In addition, interaction-induced higher-band processes also give rise to strongly modified tunneling, on-site and bond-charge interactions. We derive an extended occupation-dependent Hubbard model with multi-orbitally renormalized processes and compute the corresponding phase diagram. It substantially deviates from the single-band Bose–Hubbard model and predicts strong changes of the superfluid-to-Mott-insulator transition. In general, the presented beyond-Hubbard physics plays an essential role in bosonic lattice systems and has an observable influence on experiments with tunable interactions.


Physical Review Letters | 2011

Multiband spectroscopy of ultracold fermions: observation of reduced tunneling in attractive Bose-Fermi mixtures.

Jannes Heinze; Sören Götze; Jasper Simon Krauser; Bastian Hundt; Nick Fläschner; Dirk-Sören Lühmann; Christoph Becker; K. Sengstock

We perform a detailed experimental study of the band excitations and tunneling properties of ultracold fermions in optical lattices. Employing a novel multiband spectroscopy for fermionic atoms, we can measure the full band structure and tunneling energy with high accuracy. In an attractive Bose-Fermi mixture we observe a significant reduction of the fermionic tunneling energy, which depends on the relative atom numbers. We attribute this to an interaction-induced increase of the lattice depth due to the self-trapping of the atoms.

Collaboration


Dive into the Dirk-Sören Lühmann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge