Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Disha Awasthy is active.

Publication


Featured researches published by Disha Awasthy.


Microbiology | 2012

Alanine racemase mutants of Mycobacterium tuberculosis require D-alanine for growth and are defective for survival in macrophages and mice.

Disha Awasthy; Subbulakshmi; Umender Sharma

Alanine racemase (Alr) is an essential enzyme in most bacteria; however, some species (e.g. Listeria monocytogenes) can utilize d-amino acid transaminase (Dat) to generate d-alanine, which renders Alr non-essential. In addition to the conflicting reports on gene knockout of alr in Mycobacterium smegmatis, a recent study concluded that depletion of Alr does not affect the growth of M. smegmatis. In order to get an unambiguous answer on the essentiality of Alr in Mycobacterium tuberculosis and validate it as a drug target in vitro and in vivo, we have inactivated the alr gene of M. tuberculosis and found that it was not possible to generate an alr knockout in the absence of a complementing gene copy or d-alanine in the growth medium. The growth kinetics of the alr mutant revealed that M. tuberculosis requires very low amounts of d-alanine (5-10 µg ml(-1)) for optimum growth. Survival kinetics of the mutant in the absence of d-alanine indicated that depletion of this amino acid results in rapid loss of viability. The alr mutant was found to be defective for growth in macrophages. Analysis of phenotype in mice suggested that non-availability of d-alanine in mice leads to clearance of bacteria followed by stabilization of bacterial number in lungs and spleen. Additionally, reversal of d-cycloserine inhibition in the presence of d-alanine in M. tuberculosis suggested that Alr is the primary target of d-cycloserine. Thus, Alr of M. tuberculosis is a valid drug target and inhibition of Alr alone should result in loss of viability in vitro and in vivo.


Microbiology | 2009

Inactivation of the ilvB1 gene in Mycobacterium tuberculosis leads to branched-chain amino acid auxotrophy and attenuation of virulence in mice.

Disha Awasthy; Sheshagiri Gaonkar; Radha Shandil; Reena Yadav; Nimi Marcel; Venkita Subbulakshmi; Umender Sharma

Acetohydroxyacid synthase (AHAS) is the first enzyme in the branched-chain amino acid biosynthesis pathway in bacteria. Bioinformatics analysis revealed that the Mycobacterium tuberculosis genome contains four genes (ilvB1, ilvB2, ilvG and ilvX) coding for the large catalytic subunit of AHAS, whereas only one gene (ilvN or ilvH) coding for the smaller regulatory subunit of this enzyme was found. In order to understand the physiological role of AHAS in survival of the organism in vitro and in vivo, we inactivated the ilvB1 gene of M. tuberculosis. The mutant strain was found to be auxotrophic for all of the three branched-chain amino acids (isoleucine, leucine and valine), when grown with either C(6) or C(2) carbon sources, suggesting that the ilvB1 gene product is the major AHAS in M. tuberculosis. Depletion of these branched chain amino acids in the medium led to loss of viability of the DeltailvB1 strain in vitro, resulting in a 4-log reduction in colony-forming units after 10 days. Survival kinetics of the mutant strain cultured in macrophages maintained with sub-optimal concentrations of the branched-chain amino acids did not show any loss of viability, indicating either that the intracellular environment was rich in these amino acids or that the other AHAS catalytic subunits were functional under these conditions. Furthermore, the growth kinetics of the DeltailvB1 strain in mice indicated that although this mutant strain showed defective growth in vivo, it could persist in the infected mice for a long time, and therefore could be a potential vaccine candidate.


Journal of Medicinal Chemistry | 2014

Novel N-Linked Aminopiperidine-Based Gyrase Inhibitors with Improved hERG and in Vivo Efficacy against Mycobacterium tuberculosis

Shahul Hameed P; Vikas Patil; Suresh Solapure; Umender Sharma; Prashanti Madhavapeddi; Anandkumar Raichurkar; Murugan Chinnapattu; Praveena Manjrekar; Gajanan Shanbhag; Jayashree Puttur; Vikas Shinde; Sreenivasaiah Menasinakai; Suresh Rudrapatana; Vijayashree Achar; Disha Awasthy; Radha Nandishaiah; Vaishali Humnabadkar; Anirban Ghosh; Chandan Narayan; V. K. Ramya; Parvinder Kaur; Sreevalli Sharma; Jim Werngren; Sven Hoffner; C. N. Naveen Kumar; Jitendar Reddy; Mahesh Kumar Kn; Samit Ganguly; Ugarkar Bheemarao; Kakoli Mukherjee

DNA gyrase is a clinically validated target for developing drugs against Mycobacterium tuberculosis (Mtb). Despite the promise of fluoroquinolones (FQs) as anti-tuberculosis drugs, the prevalence of pre-existing resistance to FQs is likely to restrict their clinical value. We describe a novel class of N-linked aminopiperidinyl alkyl quinolones and naphthyridones that kills Mtb by inhibiting the DNA gyrase activity. The mechanism of inhibition of DNA gyrase was distinct from the fluoroquinolones, as shown by their ability to inhibit the growth of fluoroquinolone-resistant Mtb. Biochemical studies demonstrated this class to exert its action via single-strand cleavage rather than double-strand cleavage, as seen with fluoroquinolones. The compounds are highly bactericidal against extracellular as well as intracellular Mtb. Lead optimization resulted in the identification of potent compounds with improved oral bioavailability and reduced cardiac ion channel liability. Compounds from this series are efficacious in various murine models of tuberculosis.


Journal of Medicinal Chemistry | 2014

N-Aryl-2-aminobenzimidazoles: Novel, Efficacious, Antimalarial Lead Compounds

P Shahul Hameed; Abhishek Srivastava; Gajanan Shanbhag; Sapna Morayya; Nikhil Rautela; Disha Awasthy; Stefan Kavanagh; Jitendar Reddy; K. R. Prabhakar; Ramanatha Saralaya; Robert Nanduri; Anandkumar Raichurkar; Sreenivasaiah Menasinakai; Vijayashree Achar; María Belén Jiménez-Díaz; María Santos Martínez; Iñigo Angulo-Barturen; Santiago Ferrer; Laura Sanz; Francisco Javier Gamo; Sandra Duffy; Vicky M. Avery; David Waterson; Marcus C. S. Lee; Olivia Coburn-Flynn; David A. Fidock; Pravin S. Iyer; Shridhar Narayanan; Vinayak Hosagrahara; Vasan K. Sambandamurthy

From the phenotypic screening of the AstraZeneca corporate compound collection, N-aryl-2-aminobenzimidazoles have emerged as novel hits against the asexual blood stage of Plasmodium falciparum (Pf). Medicinal chemistry optimization of the potency against Pf and ADME properties resulted in the identification of 12 as a lead molecule. Compound 12 was efficacious in the P. berghei (Pb) model of malaria. This compound displayed an excellent pharmacokinetic profile with a long half-life (19 h) in rat blood. This profile led to an extended survival of animals for over 30 days following a dose of 50 mg/kg in the Pb malaria model. Compound 12 retains its potency against a panel of Pf isolates with known mechanisms of resistance. The fast killing observed in the in vitro parasite reduction ratio (PRR) assay coupled with the extended survival highlights the promise of this novel chemical class for the treatment of malaria.


Tuberculosis | 2015

Genetic and chemical validation identifies Mycobacterium tuberculosis topoisomerase I as an attractive anti-tubercular target

Sudha Ravishankar; Anisha Ambady; Disha Awasthy; Naina Vinay Mudugal; Sreenivasaiah Menasinakai; Sandesh Jatheendranath; Supreeth Guptha; Sreevalli Sharma; Gayathri Balakrishnan; Radha Nandishaiah; Charles J. Eyermann; Folkert Reck; Suresh Rudrapatna; Vasan K. Sambandamurthy; Umender Sharma

DNA topoisomerases perform the essential function of maintaining DNA topology in prokaryotes. DNA gyrase, an essential enzyme that introduces negative supercoils, is a clinically validated target. However, topoisomerase I (Topo I), an enzyme responsible for DNA relaxation has received less attention as an antibacterial target, probably due to the ambiguity over its essentiality in many organisms. The Mycobacterium tuberculosis genome harbors a single topA gene with no obvious redundancy in its function suggesting an essential role. The topA gene could be inactivated only in the presence of a complementing copy of the gene in M. tuberculosis. Furthermore, down-regulation of topA in a genetically engineered strain of M. tuberculosis resulted in loss of bacterial viability which correlated with a concomitant depletion of intracellular Topo I levels. The topA knockdown strain of M. tuberculosis failed to establish infection in a murine model of TB and was cleared from lungs in two months post infection. Phenotypic screening of a Topo I overexpression strain led to the identification of an inhibitor, thereby providing chemical validation of this target. Thus, our work confirms the attractiveness of Topo I as an anti-mycobacterial target.


Nature Communications | 2015

Triaminopyrimidine is a fast-killing and long-acting antimalarial clinical candidate

Shahul Hameed P; Suresh Solapure; Vikas Patil; Philipp P. Henrich; Pamela Magistrado; Kannan Murugan; Pavithra Viswanath; Jayashree Puttur; Abhishek Srivastava; Eknath Bellale; Gajanan Shanbag; Disha Awasthy; Sudhir Landge; Sapna Morayya; Krishna Koushik; Ramanatha Saralaya; Anandkumar Raichurkar; Nikhil Rautela; Nilanjana Roy Choudhury; Anisha Ambady; Radha Nandishaiah; Jitendar Reddy; K. R. Prabhakar; Sreenivasaiah Menasinakai; Suresh Rudrapatna; Monalisa Chatterji; María Belén Jiménez-Díaz; María Santos Martínez; Laura Sanz; Olivia Coburn-Flynn

The widespread emergence of Plasmodium falciparum (Pf) strains resistant to frontline agents has fuelled the search for fast-acting agents with novel mechanism of action. Here, we report the discovery and optimization of novel antimalarial compounds, the triaminopyrimidines (TAPs), which emerged from a phenotypic screen against the blood stages of Pf. The clinical candidate (compound 12) is efficacious in a mouse model of Pf malaria with an ED99 <30 mg kg−1 and displays good in vivo safety margins in guinea pigs and rats. With a predicted half-life of 36 h in humans, a single dose of 260 mg might be sufficient to maintain therapeutic blood concentration for 4–5 days. Whole-genome sequencing of resistant mutants implicates the vacuolar ATP synthase as a genetic determinant of resistance to TAPs. Our studies highlight the potential of TAPs for single-dose treatment of Pf malaria in combination with other agents in clinical development.


Journal of Medicinal Chemistry | 2014

Diarylthiazole: an antimycobacterial scaffold potentially targeting PrrB-PrrA two-component system.

Eknath Bellale; Maruti Naik; Varun Vb; Anisha Ambady; Ashwini Narayan; Sudha Ravishankar; Parvinder Kaur; Robert E. McLaughlin; James Whiteaker; Sapna Morayya; Supreeth Guptha; Sreevalli Sharma; Anandkumar Raichurkar; Disha Awasthy; Vijayshree Achar; Prakash Vachaspati; Balachandra Bandodkar; Manoranjan Panda; Monalisa Chatterji

Diarylthiazole (DAT), a hit from diversity screening, was found to have potent antimycobacterial activity against Mycobacterium tuberculosis (Mtb). In a systematic medicinal chemistry exploration, we demonstrated chemical opportunities to optimize the potency and physicochemical properties. The effort led to more than 10 compounds with submicromolar MICs and desirable physicochemical properties. The potent antimycobacterial activity, in conjunction with low molecular weight, made the series an attractive lead (antibacterial ligand efficiency (ALE)>0.4). The series exhibited excellent bactericidal activity and was active against drug-sensitive and resistant Mtb. Mutational analysis showed that mutations in prrB impart resistance to DAT compounds but not to reference drugs tested. The sensor kinase PrrB belongs to the PrrBA two component system and is potentially the target for DAT. PrrBA is a conserved, essential regulatory mechanism in Mtb and has been shown to have a role in virulence and metabolic adaptation to stress. Hence, DATs provide an opportunity to understand a completely new target system for antimycobacterial drug discovery.


Antimicrobial Agents and Chemotherapy | 2014

Optimization of Pyrrolamides as Mycobacterial GyrB ATPase Inhibitors: Structure-Activity Relationship and In Vivo Efficacy in a Mouse Model of Tuberculosis

Shahul Hameed P; Suresh Solapure; Kakoli Mukherjee; Vrinda Nandi; David Waterson; Radha Shandil; Meenakshi Balganesh; Vasan K. Sambandamurthy; Anand Kumar V. Raichurkar; Abhijeet Deshpande; Anirban Ghosh; Disha Awasthy; Gajanan Shanbhag; Gulebahar Sheikh; Helen McMiken; Jayashree Puttur; Jitendar Reddy; Jim Werngren; Jon Read; Mahesh Kumar; Manjunatha R; Murugan Chinnapattu; Prashanti Madhavapeddi; Praveena Manjrekar; Reetobrata Basu; Sheshagiri Gaonkar; Sreevalli Sharma; Sven Hoffner; Vaishali Humnabadkar; Venkita Subbulakshmi

ABSTRACT Moxifloxacin has shown excellent activity against drug-sensitive as well as drug-resistant tuberculosis (TB), thus confirming DNA gyrase as a clinically validated target for discovering novel anti-TB agents. We have identified novel inhibitors in the pyrrolamide class which kill Mycobacterium tuberculosis through inhibition of ATPase activity catalyzed by the GyrB domain of DNA gyrase. A homology model of the M. tuberculosis H37Rv GyrB domain was used for deciphering the structure-activity relationship and binding interactions of inhibitors with mycobacterial GyrB enzyme. Proposed binding interactions were later confirmed through cocrystal structure studies with the Mycobacterium smegmatis GyrB ATPase domain. The most potent compound in this series inhibited supercoiling activity of DNA gyrase with a 50% inhibitory concentration (IC50) of <5 nM, an MIC of 0.03 μg/ml against M. tuberculosis H37Rv, and an MIC90 of <0.25 μg/ml against 99 drug-resistant clinical isolates of M. tuberculosis. The frequency of isolating spontaneous resistant mutants was ∼10−6 to 10−8, and the point mutation mapped to the M. tuberculosis GyrB domain (Ser208 Ala), thus confirming its mode of action. The best compound tested for in vivo efficacy in the mouse model showed a 1.1-log reduction in lung CFU in the acute model and a 0.7-log reduction in the chronic model. This class of GyrB inhibitors could be developed as novel anti-TB agents.


Microbiology | 2010

Essentiality and functional analysis of type I and type III pantothenate kinases of Mycobacterium tuberculosis

Disha Awasthy; Anisha Ambady; Jyothi Bhat; Gulebahar Sheikh; Sudha Ravishankar; Venkita Subbulakshmi; Kakoli Mukherjee; Vasan K. Sambandamurthy; Umender Sharma

Pantothenate kinase, an essential enzyme in bacteria and eukaryotes, is involved in catalysing the first step of conversion of pantothenate to coenzyme A (CoA). Three isoforms (type I, II and III) of this enzyme have been reported from various organisms, which can be differentiated from each other on the basis of their biochemical and structural characteristics. Though most bacteria carry only one of the isoforms of pantothenate kinases, some of them possess two isoforms. The physiological relevance of the presence of two types of isozymes in a single organism is not clear. Mycobacterium tuberculosis, an intracellular pathogen, possesses two isoforms of pantothenate kinases (CoaA and CoaX) belonging to type I and III. In order to determine which pantothenate kinase is essential in mycobacteria, we performed gene inactivation of coaA and coaX of M. tuberculosis individually. It was found that coaA could only be inactivated in the presence of an extra copy of the gene, while coaX could be inactivated in the wild-type cells, proving that CoaA is the essential pantothenate kinase in M. tuberculosis. Additionally, the coaA gene of M. tuberculosis was able to complement a temperature-sensitive coaA mutant of Escherichia coli at a non-permissive temperature while coaX could not. The coaX deletion mutant showed no growth defects in vitro, in macrophages or in mice. Taken together, our data suggest that CoaX, which is essential in Bacillus anthracis and thus had been suggested to be a drug target in this organism, might not be a valid target in M. tuberculosis. We have established that the type I isoform, CoaA, is the essential pantothenate kinase in M. tuberculosis and thus can be explored as a drug target.


Journal of Medicinal Chemistry | 2014

Aminoazabenzimidazoles, a Novel Class of Orally Active Antimalarial Agents

Shahul Hameed P; Murugan Chinnapattu; Gajanan Shanbag; Praveena Manjrekar; Krishna Koushik; Anandkumar Raichurkar; Vikas Patil; Sandesh Jatheendranath; Suresh Rudrapatna; Shubhada Pramod Barde; Nikhil Rautela; Disha Awasthy; Sapna Morayya; Chandan Narayan; Stefan Kavanagh; Ramanatha Saralaya; Pavithra Viswanath; Kakoli Mukherjee; Balachandra Bandodkar; Abhishek Srivastava; Jitender Reddy; K. R. Prabhakar; Achyut Sinha; María Belén Jiménez-Díaz; María Santos Martínez; Iñigo Angulo-Barturen; Santiago Ferrer; Laura Sanz; Francisco Javier Gamo; Sandra Duffy

Whole-cell high-throughput screening of the AstraZeneca compound library against the asexual blood stage of Plasmodium falciparum (Pf) led to the identification of amino imidazoles, a robust starting point for initiating a hit-to-lead medicinal chemistry effort. Structure-activity relationship studies followed by pharmacokinetics optimization resulted in the identification of 23 as an attractive lead with good oral bioavailability. Compound 23 was found to be efficacious (ED90 of 28.6 mg·kg(-1)) in the humanized P. falciparum mouse model of malaria (Pf/SCID model). Representative compounds displayed a moderate to fast killing profile that is comparable to that of chloroquine. This series demonstrates no cross-resistance against a panel of Pf strains with mutations to known antimalarial drugs, thereby suggesting a novel mechanism of action for this chemical class.

Collaboration


Dive into the Disha Awasthy's collaboration.

Researchain Logo
Decentralizing Knowledge