Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dmitri Chernyshenko is active.

Publication


Featured researches published by Dmitri Chernyshenko.


Scientific Reports | 2015

Ground state search, hysteretic behaviour, and reversal mechanism of skyrmionic textures in confined helimagnetic nanostructures

Marijan Beg; Rebecca Carey; Weiwei Wang; David Cortés-Ortuño; Mark Vousden; Marc-Antonio Bisotti; Maximilian Albert; Dmitri Chernyshenko; Ondrej Hovorka; R. L. Stamps; Hans Fangohr

Magnetic skyrmions have the potential to provide solutions for low-power, high-density data storage and processing. One of the major challenges in developing skyrmion-based devices is the skyrmions’ magnetic stability in confined helimagnetic nanostructures. Through a systematic study of equilibrium states, using a full three-dimensional micromagnetic model including demagnetisation effects, we demonstrate that skyrmionic textures are the lowest energy states in helimagnetic thin film nanostructures at zero external magnetic field and in absence of magnetocrystalline anisotropy. We also report the regions of metastability for non-ground state equilibrium configurations. We show that bistable skyrmionic textures undergo hysteretic behaviour between two energetically equivalent skyrmionic states with different core orientation, even in absence of both magnetocrystalline and demagnetisation-based shape anisotropies, suggesting the existence of Dzyaloshinskii-Moriya-based shape anisotropy. Finally, we show that the skyrmionic texture core reversal dynamics is facilitated by the Bloch point occurrence and propagation.


Physical Review B | 2011

Joule heating in nanowires

Hans Fangohr; Dmitri Chernyshenko; Matteo Franchin; Thomas Fischbacher; Guido Meier

We study the effect of Joule heating from electric currents flowing through ferromagnetic nanowires on the temperature of the nanowires and on the temperature of the substrate on which the nanowires are grown. The spatial current density distribution, the associated heat generation, and diffusion of heat is simulated within the nanowire and the substrate. We study several different nanowire and constriction geometries as well as different substrates: (thin) silicon nitride membranes, (thick) silicon wafers, and (thick) diamond wafers. The spatially resolved increase in temperature as a function of time is computed. For effectively three-dimensional substrates (where the substrate thickness greatly exceeds the nanowire length), we identify three different regimes of heat propagation through the substrate: regime (i), where the nanowire temperature increases approximately logarithmically as a function of time. In this regime, the nanowire temperature is well-described analytically by You et al. [APL89, 222513 (2006)]. We provide an analytical expression for the time tc that marks the upper applicability limit of the You model. After tc, the heat flow enters regime (ii), where the nanowire temperature stays constant while a hemispherical heat front carries the heat away from the wire and into the substrate. As the heat front reaches the boundary of the substrate, regime (iii) is entered where the nanowire and substrate temperature start to increase rapidly. For effectively two-dimensional substrates (where the nanowire length greatly exceeds the sub- strate thickness), there is only one regime in which the temperature increases logarithmically with time for large times. We provide an analytical expression, valid for all pulse durations, that allows one to accurately compute this temperature increase in the nanowire on thin substrates


Physical Review Letters | 2015

Magnon-driven domain-wall motion with the Dzyaloshinskii-Moriya interaction

Weiwei Wang; Maximilian Albert; Marijan Beg; Marc-Antonio Bisotti; Dmitri Chernyshenko; David Cortés-Ortuño; Ian Hawke; Hans Fangohr

We study domain-wall (DW) motion induced by spin waves (magnons) in the presence of the Dzyaloshinskii-Moriya interaction (DMI). The DMI exerts a torque on the DW when spin waves pass through the DW, and this torque represents a linear momentum exchange between the spin wave and the DW. Unlike angular momentum exchange between the DW and spin waves, linear momentum exchange leads to a rotation of the DW plane rather than a linear motion. In the presence of an effective easy plane anisotropy, this DMI induced linear momentum transfer mechanism is significantly more efficient than angular momentum transfer in moving the DW.


Applied Physics Letters | 2016

Skyrmions in thin films with easy-plane magnetocrystalline anisotropy

Mark Vousden; Maximilian Albert; Marijan Beg; Marc-Antonio Bisotti; Rebecca Carey; Dmitri Chernyshenko; David Cortés-Ortuño; Weiwei Wang; Ondrej Hovorka; C. H. Marrows; Hans Fangohr

We demonstrate that chiral skyrmionic magnetization configurations can be found as the minimum energy state in B20 thin film materials with easy-plane magnetocrystalline anisotropy with an applied magnetic field perpendicular to the film plane. Our observations contradict results from prior analytical work, but are compatible with recent experimental investigations. The size of the observed skyrmions increases with the easy-plane magnetocrystalline anisotropy. We use a full micromagnetic model including demagnetization and a three-dimensional geometry to find local energy minimum (metastable) magnetization configurations using numerical damped time integration. We explore the phase space of the system and start simulations from a variety of initial magnetization configurations to present a systematic overview of anisotropy and magnetic field parameters for which skyrmions are metastable and global energy minimum (stable) states.


Physical Review B | 2015

Phenomenological description of the nonlocal magnetization relaxation in magnonics, spintronics, and domain-wall dynamics

Weiwei Wang; Mykola Dvornik; Marc-Antonio Bisotti; Dmitri Chernyshenko; Marijan Beg; Maximilian Albert; Arne Vansteenkiste; Bartel Van Waeyenberge; Andriy N. Kuchko; V. V. Kruglyak; Hans Fangohr

A phenomenological equation called the Landau-Lifshitz-Baryakhtar (LLBar) [Zh. Eksp. Teor. Fiz 87, 1501 (1984) [Sov. Phys. JETP 60, 863 (1984)]] equation, which could be viewed as the combination of the Landau-Lifshitz (LL) equation and an extra “exchange-damping” term, was derived by Baryakhtar using Onsagers relations. We interpret the origin of this exchange damping as nonlocal damping by linking it to the spin current pumping. The LLBar equation is investigated numerically and analytically for the spin-wave decay and domain-wall motion. Our results show that the lifetime and propagation length of short-wavelength magnons in the presence of nonlocal damping could be much smaller than those given by the LL equation. Furthermore, we find that both the domain-wall mobility and the Walker breakdown field are strongly influenced by the nonlocal damping


Journal of Magnetism and Magnetic Materials | 2017

Proposal of a micromagnetic standard problem for ferromagnetic resonance simulations

A. A. Baker; Marijan Beg; Gregory Ashton; Maximilian Albert; Dmitri Chernyshenko; Weiwei Wang; S. L. Zhang; Marc-Antonio Bisotti; Matteo Franchin; Chun Lian Hu; R. L. Stamps; T. Hesjedal; Hans Fangohr

Nowadays, micromagnetic simulations are a common tool for studying a wide range of different magnetic phenomena, including the ferromagnetic resonance. A technique for evaluating reliability and validity of different micromagnetic simulation tools is the simulation of proposed standard problems. We propose a new standard problem by providing a detailed specification and analysis of a sufficiently simple problem. By analyzing the magnetization dynamics in a thin permalloy square sample, triggered by a well defined excitation, we obtain the ferromagnetic resonance spectrum and identify the resonance modes via Fourier transform. Simulations are performed using both finite difference and finite element numerical methods, with OOMMF and Nmag simulators, respectively. We report the effects of initial conditions and simulation parameters on the character of the observed resonance modes for this standard problem. We provide detailed instructions and code to assist in using the results for evaluation of new simulator tools, and to help with numerical calculation of ferromagnetic resonance spectra and modes in general.


Journal of Magnetism and Magnetic Materials | 2015

Computing the demagnetizing tensor for finite difference micromagnetic simulations via numerical integration

Dmitri Chernyshenko; Hans Fangohr

Abstract In the finite difference method which is commonly used in computational micromagnetics, the demagnetizing field is usually computed as a convolution of the magnetization vector field with the demagnetizing tensor that describes the magnetostatic field of a cuboidal cell with constant magnetization. An analytical expression for the demagnetizing tensor is available, however at distances far from the cuboidal cell, the numerical evaluation of the analytical expression can be very inaccurate. Due to this large-distance inaccuracy numerical packages such as OOMMF compute the demagnetizing tensor using the explicit formula at distances close to the originating cell, but at distances far from the originating cell a formula based on an asymptotic expansion has to be used. In this work, we describe a method to calculate the demagnetizing field by numerical evaluation of the multidimensional integral in the demagnetizing tensor terms using a sparse grid integration scheme. This method improves the accuracy of computation at intermediate distances from the origin. We compute and report the accuracy of (i) the numerical evaluation of the exact tensor expression which is best for short distances, (ii) the asymptotic expansion best suited for large distances, and (iii) the new method based on numerical integration, which is superior to methods (i) and (ii) for intermediate distances. For all three methods, we show the measurements of accuracy and execution time as a function of distance, for calculations using single precision (4-byte) and double precision (8-byte) floating point arithmetic. We make recommendations for the choice of scheme order and integrating coefficients for the numerical integration method (iii).


Journal of Magnetism and Magnetic Materials | 2016

Computation of the magnetostatic interaction between linearly magnetized polyhedrons

Dmitri Chernyshenko; Hans Fangohr

Abstract In this paper we present a method to accurately compute the energy of the magnetostatic interaction between linearly (or uniformly, as a special case) magnetized polyhedrons. The method has applications in finite element micromagnetics, or more generally in computing the magnetostatic interaction when the magnetization is represented using the finite element method (FEM). The magnetostatic energy is described by a six-fold integral that is singular when the interaction regions overlap, making direct numerical evaluation problematic. To resolve the singularity, we evaluate four of the six iterated integrals analytically resulting in a 2d integral over the surface of a polyhedron, which is nonsingular and can be integrated numerically. This provides a more accurate and efficient way of computing the magnetostatic energy integral compared to existing approaches. The method was developed to facilitate the evaluation of the demagnetizing interaction between neighbouring elements in finite-element micromagnetics and provides a possibility to compute the demagnetizing field using efficient fast multipole or tree code algorithms.


ieee international magnetics conference | 2017

Ground state skyrmion and helical states in confined FeGe nanostructures

Ryan A. Pepper; Marijan Beg; D.I. Cortes; Rebecca Carey; Weiwei Wang; Maximillian Albert; Dmitri Chernyshenko; Hans Fangohr

Confined nanogeometries have proved interesting research arenas in magnetism in recent years, with bit-patterned media being one prospective method for increasing storage densities of future hard drives [1].


Physical Review B | 2011

Enhanced spin transfer torque effect for transverse domain walls in cylindrical nanowires

Matteo Franchin; Max Albert; Andreas Knittel; Dmitri Chernyshenko; Thomas Fischbacher; Hans Fangohr; Anil Prabhakar

Collaboration


Dive into the Dmitri Chernyshenko's collaboration.

Top Co-Authors

Avatar

Hans Fangohr

University of Southampton

View shared research outputs
Top Co-Authors

Avatar

Marijan Beg

University of Southampton

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rebecca Carey

University of Southampton

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matteo Franchin

University of Southampton

View shared research outputs
Top Co-Authors

Avatar

Mark Vousden

University of Southampton

View shared research outputs
Researchain Logo
Decentralizing Knowledge