Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dmitri Mouradov is active.

Publication


Featured researches published by Dmitri Mouradov.


Proteomics | 2015

FunRich: An open access standalone functional enrichment and interaction network analysis tool

Mohashin Pathan; Shivakumar Keerthikumar; Ching-Seng Ang; Lahiru Gangoda; Camelia Quek; Nicholas A. Williamson; Dmitri Mouradov; Oliver M. Sieber; Richard J. Simpson; Agus Salim; Antony Bacic; Andrew F. Hill; David A. Stroud; Michael T. Ryan; Johnson I. Agbinya; John M. Mariadason; Antony W. Burgess; Suresh Mathivanan

As high‐throughput techniques including proteomics become more accessible to individual laboratories, there is an urgent need for a user‐friendly bioinformatics analysis system. Here, we describe FunRich, an open access, standalone functional enrichment and network analysis tool. FunRich is designed to be used by biologists with minimal or no support from computational and database experts. Using FunRich, users can perform functional enrichment analysis on background databases that are integrated from heterogeneous genomic and proteomic resources (>1.5 million annotations). Besides default human specific FunRich database, users can download data from the UniProt database, which currently supports 20 different taxonomies against which enrichment analysis can be performed. Moreover, the users can build their own custom databases and perform the enrichment analysis irrespective of organism. In addition to proteomics datasets, the custom database allows for the tool to be used for genomics, lipidomics and metabolomics datasets. Thus, FunRich allows for complete database customization and thereby permits for the tool to be exploited as a skeleton for enrichment analysis irrespective of the data type or organism used. FunRich (http://www.funrich.org) is user‐friendly and provides graphical representation (Venn, pie charts, bar graphs, column, heatmap and doughnuts) of the data with customizable font, scale and color (publication quality).


Cancer Discovery | 2014

Tolerance of Whole-Genome Doubling Propagates Chromosomal Instability and Accelerates Cancer Genome Evolution

Sally M. Dewhurst; Nicholas McGranahan; Rebecca A. Burrell; Andrew Rowan; Eva Grönroos; David Endesfelder; Tejal Joshi; Dmitri Mouradov; Peter Gibbs; Robyn L. Ward; Nicholas J. Hawkins; Zoltan Szallasi; Oliver M. Sieber; Charles Swanton

UNLABELLED The contribution of whole-genome doubling to chromosomal instability (CIN) and tumor evolution is unclear. We use long-term culture of isogenic tetraploid cells from a stable diploid colon cancer progenitor to investigate how a genome-doubling event affects genome stability over time. Rare cells that survive genome doubling demonstrate increased tolerance to chromosome aberrations. Tetraploid cells do not exhibit increased frequencies of structural or numerical CIN per chromosome. However, the tolerant phenotype in tetraploid cells, coupled with a doubling of chromosome aberrations per cell, allows chromosome abnormalities to evolve specifically in tetraploids, recapitulating chromosomal changes in genomically complex colorectal tumors. Finally, a genome-doubling event is independently predictive of poor relapse-free survival in early-stage disease in two independent cohorts in multivariate analyses [discovery data: hazard ratio (HR), 4.70, 95% confidence interval (CI), 1.04-21.37; validation data: HR, 1.59, 95% CI, 1.05-2.42]. These data highlight an important role for the tolerance of genome doubling in driving cancer genome evolution. SIGNIFICANCE Our work sheds light on the importance of whole-genome–doubling events in colorectal cancer evolution. We show that tetraploid cells undergo rapid genomic changes and recapitulate the genetic alterations seen in chromosomally unstable tumors. Furthermore, we demonstrate that a genome-doubling event is prognostic of poor relapse-free survival in this disease type.


Molecular Cancer | 2013

Analysis of colorectal cancers in British Bangladeshi identifies early onset, frequent mucinous histotype and a high prevalence of RBFOX1 deletion.

Neel Sengupta; Christopher Yau; Anuratha Sakthianandeswaren; Dmitri Mouradov; Peter Gibbs; Nirosha Suraweera; Jean-Baptiste Cazier; Guadalupe Polanco-Echeverry; Anil Ghosh; M. A. Thaha; Shafi Ahmed; Roger Feakins; David Propper; Sina Dorudi; Oliver M. Sieber; Andrew Silver; Cecilia Lai

BackgroundPrevalence of colorectal cancer (CRC) in the British Bangladeshi population (BAN) is low compared to British Caucasians (CAU). Genetic background may influence mutations and disease features.MethodsWe characterized the clinicopathological features of BAN CRCs and interrogated their genomes using mutation profiling and high-density single nucleotide polymorphism (SNP) arrays and compared findings to CAU CRCs.ResultsAge of onset of BAN CRC was significantly lower than for CAU patients (p=3.0 x 10-5) and this difference was not due to Lynch syndrome or the polyposis syndromes. KRAS mutations in BAN microsatellite stable (MSS) CRCs were comparatively rare (5.4%) compared to CAU MSS CRCs (25%; p=0.04), which correlates with the high percentage of mucinous histotype observed (31%) in the BAN samples. No BRAF mutations was seen in our BAN MSS CRCs (CAU CRCs, 12%; p=0.08). Array data revealed similar patterns of gains (chromosome 7 and 8q), losses (8p, 17p and 18q) and LOH (4q, 17p and 18q) in BAN and CAU CRCs. A small deletion on chromosome 16p13.2 involving the alternative splicing factor RBFOX1 only was found in significantly more BAN (50%) than CAU CRCs (15%) cases (p=0.04). Focal deletions targeting the 5’ end of the gene were also identified. Novel RBFOX1 mutations were found in CRC cell lines and tumours; mRNA and protein expression was reduced in tumours.ConclusionsKRAS mutations were rare in BAN MSS CRC and a mucinous histotype common. Loss of RBFOX1 may explain the anomalous splicing activity associated with CRC.


Cancer Research | 2013

SMAD2, SMAD3 and SMAD4 mutations in colorectal cancer.

Nicholas I. Fleming; Robert N. Jorissen; Dmitri Mouradov; Michael Christie; Anuratha Sakthianandeswaren; Michelle Palmieri; Fiona L. Day; Shan Li; Cary Tsui; Lara Lipton; Jayesh Desai; Ian Jones; Stephen McLaughlin; Robyn L. Ward; Nicholas J. Hawkins; Andrew Ruszkiewicz; James Moore; Hong-Jian Zhu; John M. Mariadason; Antony W. Burgess; Dana Busam; Qi Zhao; Robert L. Strausberg; Peter Gibbs; Oliver M. Sieber

Activation of the canonical TGF-β signaling pathway provides growth inhibitory signals in the normal intestinal epithelium. Colorectal cancers (CRCs) frequently harbor somatic mutations in the pathway members TGFBR2 and SMAD4, but to what extent mutations in SMAD2 or SMAD3 contribute to tumorigenesis is unclear. A cohort of 744 primary CRCs and 36 CRC cell lines were sequenced for SMAD4, SMAD2, and SMAD3 and analyzed for allelic loss by single-nucleotide polymorphism (SNP) microarray analysis. Mutation spectra were compared between the genes, the pathogenicity of mutations was assessed, and relationships with clinicopathologic features were examined. The prevalence of SMAD4, SMAD2, and SMAD3 mutations in sporadic CRCs was 8.6% (64 of 744), 3.4% (25 of 744), and 4.3% (32 of 744), respectively. A significant overrepresentation of two genetic hits was detected for SMAD4 and SMAD3, consistent with these genes acting as tumor suppressors. SMAD4 mutations were associated with mucinous histology. The mutation spectra of SMAD2 and SMAD3 were highly similar to that of SMAD4, both in mutation type and location within the encoded proteins. In silico analyses suggested the majority of the mutations were pathogenic, with most missense changes predicted to reduce protein stability or hinder SMAD complex formation. The latter altered interface residues or disrupted the phosphorylation-regulated Ser-Ser-X-Ser motifs within SMAD2 and SMAD3. Functional analyses of selected mutations showed reductions in SMAD3 transcriptional activity and SMAD2-SMAD4 complex formation. Joint biallelic hits in SMAD2 and SMAD3 were overrepresented and mutually exclusive to SMAD4 mutation, underlining the critical roles of these three proteins within the TGF-β signaling pathway.


Cancer Research | 2014

Colorectal cancer cell lines are representative models of the main molecular subtypes of primary cancer

Dmitri Mouradov; Clare Sloggett; Robert N. Jorissen; Christopher G. Love; Shan Li; Antony W. Burgess; Diego Arango; Robert L. Strausberg; Daniel D. Buchanan; Samuel Wormald; Liam O'Connor; Jennifer L. Wilding; David C. Bicknell; Ian Tomlinson; Walter F. Bodmer; John M. Mariadason; Oliver M. Sieber

Human colorectal cancer cell lines are used widely to investigate tumor biology, experimental therapy, and biomarkers. However, to what extent these established cell lines represent and maintain the genetic diversity of primary cancers is uncertain. In this study, we profiled 70 colorectal cancer cell lines for mutations and DNA copy number by whole-exome sequencing and SNP microarray analyses, respectively. Gene expression was defined using RNA-Seq. Cell line data were compared with those published for primary colorectal cancers in The Cancer Genome Atlas. Notably, we found that exome mutation and DNA copy-number spectra in colorectal cancer cell lines closely resembled those seen in primary colorectal tumors. Similarities included the presence of two hypermutation phenotypes, as defined by signatures for defective DNA mismatch repair and DNA polymerase ε proofreading deficiency, along with concordant mutation profiles in the broadly altered WNT, MAPK, PI3K, TGFβ, and p53 pathways. Furthermore, we documented mutations enriched in genes involved in chromatin remodeling (ARID1A, CHD6, and SRCAP) and histone methylation or acetylation (ASH1L, EP300, EP400, MLL2, MLL3, PRDM2, and TRRAP). Chromosomal instability was prevalent in nonhypermutated cases, with similar patterns of chromosomal gains and losses. Although paired cell lines derived from the same tumor exhibited considerable mutation and DNA copy-number differences, in silico simulations suggest that these differences mainly reflected a preexisting heterogeneity in the tumor cells. In conclusion, our results establish that human colorectal cancer lines are representative of the main subtypes of primary tumors at the genomic level, further validating their utility as tools to investigate colorectal cancer biology and drug responses.


Genome Biology | 2010

A statistical approach for detecting genomic aberrations in heterogeneous tumor samples from single nucleotide polymorphism genotyping data

Christopher Yau; Dmitri Mouradov; Robert N. Jorissen; Stefano Colella; Ghazala Mirza; Graham Steers; Adrian L. Harris; Jiannis Ragoussis; Oliver M. Sieber; Christopher Holmes

We describe a statistical method for the characterization of genomic aberrations in single nucleotide polymorphism microarray data acquired from cancer genomes. Our approach allows us to model the joint effect of polyploidy, normal DNA contamination and intra-tumour heterogeneity within a single unified Bayesian framework. We demonstrate the efficacy of our method on numerous datasets including laboratory generated mixtures of normal-cancer cell lines and real primary tumours.


The American Journal of Gastroenterology | 2013

Survival in stage II/III colorectal cancer is independently predicted by chromosomal and microsatellite instability, but not by specific driver mutations.

Dmitri Mouradov; Enric Domingo; Peter Gibbs; Robert N. Jorissen; Shan Li; Pik Ying Soo; Lara Lipton; Jayesh Desai; Håvard E. Danielsen; Dahmane Oukrif; Marco Novelli; Christopher Yau; Christopher Holmes; Ian Jones; Stephen McLaughlin; Peter L. Molloy; Nicholas J. Hawkins; Robyn L. Ward; Rachel Midgely; David Kerr; Ian Tomlinson; Oliver M. Sieber

OBJECTIVES:Microsatellite instability (MSI) is an established marker of good prognosis in colorectal cancer (CRC). Chromosomal instability (CIN) is strongly negatively associated with MSI and has been shown to be a marker of poor prognosis in a small number of studies. However, a substantial group of “double-negative” (MSI−/CIN−) CRCs exists. The prognosis of these patients is unclear. Furthermore, MSI and CIN are each associated with specific molecular changes, such as mutations in KRAS and BRAF, that have been associated with prognosis. It is not known which of MSI, CIN, and the specific gene mutations are primary predictors of survival.METHODS:We evaluated the prognostic value (disease-free survival, DFS) of CIN, MSI, mutations in KRAS, NRAS, BRAF, PIK3CA, FBXW7, and TP53, and chromosome 18q loss-of-heterozygosity (LOH) in 822 patients from the VICTOR trial of stage II/III CRC. We followed up promising associations in an Australian community-based cohort (N=375).RESULTS:In the VICTOR patients, no specific mutation was associated with DFS, but individually MSI and CIN showed significant associations after adjusting for stage, age, gender, tumor location, and therapy. A combined analysis of the VICTOR and community-based cohorts showed that MSI and CIN were independent predictors of DFS (for MSI, hazard ratio (HR)=0.58, 95% confidence interval (CI) 0.36–0.93, and P=0.021; for CIN, HR=1.54, 95% CI 1.14–2.08, and P=0.005), and joint CIN/MSI testing significantly improved the prognostic prediction of MSI alone (P=0.028). Higher levels of CIN were monotonically associated with progressively poorer DFS, and a semi-quantitative measure of CIN was a better predictor of outcome than a simple CIN+/− variable. All measures of CIN predicted DFS better than the recently described Watanabe LOH ratio.CONCLUSIONS:MSI and CIN are independent predictors of DFS for stage II/III CRC. Prognostic molecular tests for CRC relapse should currently use MSI and a quantitative measure of CIN rather than specific gene mutations.


Clinical Cancer Research | 2013

PIK3CA and PTEN Gene and Exon Mutation-Specific Clinicopathologic and Molecular Associations in Colorectal Cancer

Fiona L. Day; Robert N. Jorissen; Lara Lipton; Dmitri Mouradov; Anuratha Sakthianandeswaren; Michael Christie; Shan Li; Cary Tsui; Jeanne Tie; Jayesh Desai; Zheng-Zhou Xu; Peter L. Molloy; Vicki Whitehall; Barbara A. Leggett; Ian Jones; Stephen McLaughlin; Robyn L. Ward; Nicholas J. Hawkins; Andrew Ruszkiewicz; James Moore; Dana Busam; Qi Zhao; Robert L. Strausberg; Peter Gibbs; Oliver M. Sieber

Purpose: PIK3CA and PTEN mutations are prevalent in colorectal cancer and potential markers of response to mitogen-activated protein/extracellular signal–regulated kinase inhibitors and anti-EGF receptor antibody therapy. Relationships between phosphoinositide 3-kinase (PI3K) pathway mutation, clinicopathologic characteristics, molecular features, and prognosis remain controversial. Experimental Design: A total of 1,093 stage I–IV colorectal cancers were screened for PIK3CA (exons 9 and 20), KRAS (codons 12–13), BRAF (codon 600) mutations, and microsatellite instability (MSI). PTEN (exons 3–8) and CpG island methylator phenotype (CIMP) status were determined in 744 and 489 cases. PIK3CA data were integrated with 17 previous reports (n = 5,594). Results: PIK3CA and PTEN mutations were identified in 11.9% and 5.8% of colorectal cancers. PTEN mutation was associated with proximal tumors, mucinous histology, MSI-high (MSI-H), CIMP-high (CIMP-H), and BRAF mutation (P < 0.02). PIK3CA mutation was related to older age, proximal tumors, mucinous histology, and KRAS mutation (P < 0.04). In integrated cohort analysis, PIK3CA exon 9 and 20 mutations were overrepresented in proximal, CIMP-low (CIMP-L), and KRAS-mutated cancers (P ≤ 0.011). Comparing PIK3CA exonic mutants, exon 20 mutation was associated with MSI-H, CIMP-H, and BRAF mutation, and exon 9 mutation was associated with KRAS mutation (P ≤ 0.027). Disease-free survival for stage II/III colorectal cancers did not differ by PI3K pathway status. Conclusion: PI3K pathway mutation is prominent in proximal colon cancers, with PIK3CA exon 20 and PTEN mutations associated with features of the sessile-serrated pathway (MSI-H/CIMP-H/BRAFmut), and PIK3CA exon 9 (and to a lesser extent exon 20) mutation associated with features of the traditional serrated pathway (CIMP-L/KRASmut) of tumorigenesis. Our data highlight the PI3K pathway as a therapeutic target in distinct colorectal cancer subtypes. Clin Cancer Res; 19(12); 3285–96. ©2013 AACR.


Oncogene | 2013

Different APC genotypes in proximal and distal sporadic colorectal cancers suggest distinct WNT/β-catenin signalling thresholds for tumourigenesis

Michael Christie; Robert N. Jorissen; Dmitri Mouradov; Anuratha Sakthianandeswaren; Shan Li; Fiona L. Day; Cary Tsui; Lara Lipton; Jayesh Desai; Ian Jones; Stephen McLaughlin; Robyn L. Ward; Nicholas J. Hawkins; Andrew Ruszkiewicz; James Moore; Antony W. Burgess; Dana Busam; Qi Zhao; Robert L. Strausberg; Andrew J.G. Simpson; I P M Tomlinson; Peter Gibbs; Oliver M. Sieber

Biallelic protein-truncating mutations in the adenomatous polyposis coli (APC) gene are prevalent in sporadic colorectal cancer (CRC). Mutations may not be fully inactivating, instead producing WNT/β-catenin signalling levels ‘just-right’ for tumourigenesis. However, the spectrum of optimal APC genotypes accounting for both hits, and the influence of clinicopathological features on genotype selection remain undefined. We analysed 630 sporadic CRCs for APC mutations and loss of heterozygosity (LOH) using sequencing and single-nucleotide polymorphism microarrays, respectively. Truncating APC mutations and/or LOH were detected in 75% of CRCs. Most truncating mutations occurred within a mutation cluster region (MCR; codons 1282–1581) leaving 1–3 intact 20 amino-acid repeats (20AARs) and abolishing all Ser-Ala-Met-Pro (SAMP) repeats. Cancers commonly had one MCR mutation plus either LOH or another mutation 5′ to the MCR. LOH was associated with mutations leaving 1 intact 20AAR. MCR mutations leaving 1 vs 2–3 intact 20AARs were associated with 5′ mutations disrupting or leaving intact the armadillo-repeat domain, respectively. Cancers with three hits had an over-representation of mutations upstream of codon 184, in the alternatively spliced region of exon 9, and 3′ to the MCR. Microsatellite unstable cancers showed hyper-mutation at MCR mono- and di-nucleotide repeats, leaving 2–3 intact 20AARs. Proximal and distal cancers exhibited different preferred APC genotypes, leaving a total of 2 or 3 and 0 to 2 intact 20AARs, respectively. In conclusion, APC genotypes in sporadic CRCs demonstrate ‘fine-tuned’ interdependence of hits by type and location, consistent with selection for particular residual levels of WNT/β-catenin signalling, with different ‘optimal’ thresholds for proximal and distal cancers.


British Journal of Cancer | 2015

Wild-type APC predicts poor prognosis in microsatellite-stable proximal colon cancer.

Robert N. Jorissen; Michael Christie; Dmitri Mouradov; Anuratha Sakthianandeswaren; Shan Li; Christopher G. Love; Zheng-Zhou Xu; Peter L. Molloy; Ian Jones; Stephen McLaughlin; Robyn L. Ward; Nicholas J. Hawkins; Andrew Ruszkiewicz; James Moore; Antony W. Burgess; Dana Busam; Qi Zhao; Robert L. Strausberg; Lara Lipton; Jayesh Desai; Peter Gibbs; Oliver M. Sieber

Background:APC mutations (APC-mt) occur in ∼70% of colorectal cancers (CRCs), but their relationship to prognosis is unclear.Methods:APC prognostic value was evaluated in 746 stage I–IV CRC patients, stratifying for tumour location and microsatellite instability (MSI). Microarrays were used to identify a gene signature that could classify APC mutation status, and classifier ability to predict prognosis was examined in an independent cohort.Results:Wild-type APC microsatellite stable (APC-wt/MSS) tumours from the proximal colon showed poorer overall and recurrence-free survival (OS, RFS) than APC-mt/MSS proximal, APC-wt/MSS distal and APC-mt/MSS distal tumours (OS HR⩾1.79, P⩽0.015; RFS HR⩾1.88, P⩽0.026). APC was a stronger prognostic indicator than BRAF, KRAS, PIK3CA, TP53, CpG island methylator phenotype or chromosomal instability status (P⩽0.036). Microarray analysis similarly revealed poorer survival in MSS proximal cancers with an APC-wt-like signature (P=0.019). APC status did not affect outcomes in MSI tumours. In a validation on 206 patients with proximal colon cancer, APC-wt-like signature MSS cases showed poorer survival than APC-mt-like signature MSS or MSI cases (OS HR⩾2.50, P⩽0.010; RFS HR⩾2.14, P⩽0.025). Poor prognosis APC-wt/MSS proximal tumours exhibited features of the sessile serrated neoplasia pathway (P⩽0.016).Conclusions:APC-wt status is a marker of poor prognosis in MSS proximal colon cancer.

Collaboration


Dive into the Dmitri Mouradov's collaboration.

Top Co-Authors

Avatar

Oliver M. Sieber

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Peter Gibbs

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Robert N. Jorissen

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Shan Li

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robyn L. Ward

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Anuratha Sakthianandeswaren

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Antony W. Burgess

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Ian Jones

Royal Melbourne Hospital

View shared research outputs
Top Co-Authors

Avatar

Jayesh Desai

Peter MacCallum Cancer Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge