Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dmitrii Y. Kolotkov is active.

Publication


Featured researches published by Dmitrii Y. Kolotkov.


Astronomy and Astrophysics | 2015

Multi-mode quasi-periodic pulsations in a solar flare

Dmitrii Y. Kolotkov; V. M. Nakariakov; E. G. Kupriyanova; Heather Ratcliffe; Kiyoto Shibasaki

Context. Quasi-periodic pulsations (QPP) of the electromagnetic radiation emitted in solar and stellar flares are often detected in microwave, white light, X-ray, and gamma-ray bands. Mechanisms for QPP are intensively debated in the literature. Previous studies revealed that QPP may manifest non-linear, non-stationary and, perhaps, multi-modal processes operating in flares. Aims. We study QPP of the microwave emission generated in an X3.2-class solar flare on 14 May, 2013, observed with the Nobeyama Radioheliograph (NoRH), aiming to reveal signatures of the non-linear, non-stationary, and multi-modal processes in the signal. Methods. The NoRH correlation signal obtained at the 17 GHz intensity has a clear QPP pattern. The signal was analysed with the Hilbert-Huang transform (HHT) that allows one to determine its instant amplitude and frequency, and their time variation. Results. It was established that the QPP consists of at least three well-defined intrinsic modes, with the mean periods of 15, 45, and 100 s. All the modes have quasi-harmonic behaviour with different modulation patterns. The 100 s intrinsic mode is a decaying oscillation, with the decay time of 250 s. The 15 s intrinsic mode shows a similar behaviour, with the decay time of 90 s. The 45 s mode has a wave-train behaviour. Conclusions. Dynamical properties of detected intrinsic modes indicate that the 100 s and 15 s modes are likely to be associated with fundamental kink and sausage modes of the flaring loop, respectively. The 100 s oscillation could also be caused by the fundamental longitudinal mode, while this interpretation requires the plasma temperature of about 30 million K and hence is not likely. The 45 s mode could be the second standing harmonics of the kink mode.


Physics of Plasmas | 2015

Kinetic model of force-free current sheets with non-uniform temperature

Dmitrii Y. Kolotkov; I. Y. Vasko; V. M. Nakariakov

The kinetic model of a one-dimensional force-free current sheet (CS) developed recently by Harrison and Neukirch [Phys. Rev. Lett. 102(13), 135003 (2009)] predicts uniform distributions of the plasma temperature and density across the CS. However, in realistic physical systems, inhomogeneities of these plasma parameters may arise quite naturally due to the boundary conditions or local plasma heating. Moreover, as the CS spatial scale becomes larger than the characteristic kinetic scales (the regime often referred to as the MHD limit), it should be possible to set arbitrary density and temperature profiles. Thus, an advanced model has to allow for inhomogeneities of the macroscopic plasma parameters across the CS, to be consistent with the MHD limit. In this paper, we generalise the kinetic model of a force-free current sheet, taking into account the inhomogeneity of the density and temperature across the CS. In the developed model, the density may either be enhanced or depleted in the CS central region. The temperature profile is prescribed by the density profile, keeping the plasma pressure uniform across the CS. All macroscopic parameters, as well as the distribution functions for the protons and electrons, are determined analytically. Applications of the developed model to current sheets observed in space plasmas are discussed.


Astronomy and Astrophysics | 2017

Long-period quasi-periodic oscillations of a small-scale magnetic structure on the Sun

Dmitrii Y. Kolotkov; V. V. Smirnova; P. V. Strekalova; A. Riehokainen; V. M. Nakariakov

Aims. Long-period quasi-periodic variations of the average magnetic field in a small-scale magnetic structure on the Sun are analysed. The structure is situated at the photospheric level and is involved in a facula formation in the chromosphere. Methods. The observational signal obtained from the SDO/HMI line-of-sight magnetograms of the target structure has a nonstationary behaviour, and is therefore processed with the Hilbert-Huang Transform spectral technique. Results. The empirical decomposition of the original signal and subsequent testing of the statistical significance of its intrinsic modes reveal the presence of the white and pink noisy components for the periods shorter and longer than 10 min, respectively, and a significant oscillatory mode. The oscillation is found to have a non-stationary period growing from approximately 80 to 230 min and an increasing relative amplitude, while the mean magnetic field in the oscillating structure is seen to decrease. The observed behaviour could be interpreted either by the dynamical interaction of the structure with the boundaries of supergranula cells in the region of interest or in terms of the vortex shedding appearing during the magnetic flux emergence.


Astronomy and Astrophysics | 2016

Empirical mode decomposition analysis of random processes in the solar atmosphere

Dmitrii Y. Kolotkov; Sergey Anfinogentov; V. M. Nakariakov

Context. Coloured noisy components with a power law spectral energy distribution are often shown to appear in solar signals of various types. Such a frequency-dependent noise may indicate the operation of various randomly distributed dynamical processes in the solar atmosphere. Aims. We develop a recipe for the correct usage of the empirical mode decomposition (EMD) technique in the presence of coloured noise, allowing for clear distinguishing between quasi-periodic oscillatory phenomena in the solar atmosphere and superimposed random background processes. For illustration, we statistically investigate extreme ultraviolet (EUV) emission intensity variations observed with SDO/AIA in the coronal (171 A), chromospheric (304 A), and upper photospheric (1600 A) layers of the solar atmosphere, from a quiet sun and a sunspot umbrae region. Methods. EMD has been used for analysis because of its adaptive nature and essential applicability to the processing non-stationary and amplitude-modulated time series. For the comparison of the results obtained with EMD, we use the Fourier transform technique as an etalon. Results. We empirically revealed statistical properties of synthetic coloured noises in EMD, and suggested a scheme that allows for the detection of noisy components among the intrinsic modes obtained with EMD in real signals. Application of the method to the solar EUV signals showed that they indeed behave randomly and could be represented as a combination of different coloured noises characterised by a specific value of the power law indices in their spectral energy distributions. On the other hand, 3-min oscillations in the analysed sunspot were detected to have energies significantly above the corresponding noise level. Conclusions. The correct accounting for the background frequency-dependent random processes is essential when using EMD for analysis of oscillations in the solar atmosphere. For the quiet sun region the power law index was found to increase with height above the photosphere, indicating that the higher frequency processes are trapped deeper in the quiet sun atmosphere. In contrast, lower levels of the sunspot umbrae were found to be characterised by higher values of the power law index, meaning the domination of lower frequencies deep inside the sunspot atmosphere. Comparison of the EMD results with those obtained with the Fourier transform showed good consistency, justifying the applicability of EMD.


Astronomy and Astrophysics | 2016

Transverse oscillations and stability of prominences in a magnetic field dip

Dmitrii Y. Kolotkov; Giuseppe Nisticò; V. M. Nakariakov

Aims. An analytical model of the global transverse oscillations and mechanical stability of a quiescent prominence in the magnetised environment with a magnetic field dip, accounting for the mirror current effect, is developed. Methods. The model is based upon the interaction of line currents through the Lorentz force. Within this concept the prominence is treated as a straight current-carrying wire, and the magnetic dip is provided by two photospheric current sources. Results. Properties of both vertical and horizontal oscillations are determined by the value of the prominence current, its density and height above the photosphere, and the parameters of the magnetic dip. The prominence can be stable in both horizontal and vertical directions simultaneously when the prominence current dominates in the system and its height is less than the half-distance between the photospheric sources.


Physical Review E | 2016

Nonlinear oscillations of coalescing magnetic flux ropes.

Dmitrii Y. Kolotkov; V. M. Nakariakov; George Rowlands

An analytical model of highly nonlinear oscillations occurring during a coalescence of two magnetic flux ropes, based upon two-fluid hydrodynamics, is developed. The model accounts for the effect of electric charge separation, and describes perpendicular oscillations of the current sheet formed by the coalescence. The oscillation period is determined by the current sheet thickness, the plasma parameter β, and the oscillation amplitude. The oscillation periods are typically greater or about the ion plasma oscillation period. In the nonlinear regime, the oscillations of the ion and electron concentrations have a shape of a narrow symmetric spikes.


The Astrophysical Journal | 2018

Quasi-periodic pulsations in the most powerful solar flare of cycle 24

Dmitrii Y. Kolotkov; C. E. Pugh; Anne-Marie Broomhall; V. M. Nakariakov

Quasi-periodic pulsations (QPP) are common in solar flares and are now regularly observed in stellar flares. We present the detection of two different types of QPP signals in the thermal emission light curves of the X9.3 class solar flare SOL2017-09-06T12:02, which is the most powerful flare of Cycle 24. The period of the shorter-period QPP drifts from about 12 to 25 seconds during the flare. The observed properties of this QPP are consistent with a sausage oscillation of a plasma loop in the flaring active region. The period of the longer-period QPP is about 4 to 5 minutes. Its properties are compatible with standing slow magnetoacoustic oscillations, which are often detected in coronal loops. For both QPP signals, other mechanisms such as repetitive reconnection cannot be ruled out, however. The studied solar flare has an energy in the realm of observed stellar flares, and the fact that there is evidence of a short-period QPP signal typical of solar flares along with a long-period QPP signal more typical of stellar flares suggests that the different ranges of QPP periods typically observed in solar and stellar flares is likely due to observational constraints, and that similar physical processes may be occurring in solar and stellar flares.


The Astrophysical Journal | 2018

The origin of the modulation of the radio emission from the solar corona by a fast magnetoacoustic wave

Dmitrii Y. Kolotkov; V. M. Nakariakov; Eduard P. Kontar

Observational detection of quasi-periodic drifting fine structures in a type III radio burst associated with a solar flare SOL2015-04-16T11:22, with the LOw Frequency ARray (LOFAR), is presented. Although similar modulations of the type III emission have been observed before and were associated with the plasma density fluctuations, the origin of those fluctuations was unknown. Analysis of the striae of the intensity variation in the dynamic spectrum allowed us to reveal two quasi-oscillatory components. The shorter component has an apparent wavelength of ~2 Mm, phase speed of ~657 km s−1, which gives an oscillation period of ~3 s, and a relative amplitude of ~0.35%. The longer component has a wavelength of ~12 Mm and relative amplitude of ~5.1%. The short frequency range of the detection does not allow us to estimate its phase speed. However, the properties of the shorter oscillatory component allowed us to interpret it as a fast magnetoacoustic wave guided by a plasma nonuniformity along the magnetic field outwards from the Sun. The assumption that the intensity of the radio emission is proportional to the amount of plasma in the emitting volume allowed us to show that the superposition of the plasma density modulation by a fast wave and a longer-wavelength oscillation of an unspecified nature could readily reproduce the fine structure of the observed dynamic spectrum. The observed parameters of the fast wave give an absolute value for the magnetic field in the emitting plasma of ~1.1 G, which is consistent with the radial magnetic field model.


Space Science Reviews | 2016

Magnetohydrodynamic Oscillations in the Solar Corona and Earth's Magnetosphere: Towards Consolidated Understanding

V. M. Nakariakov; V. Pilipenko; B. Heilig; P. Jelínek; M. Karlický; D. Y. Klimushkin; Dmitrii Y. Kolotkov; Dong-Hun Lee; Giuseppe Nisticò; T. Van Doorsselaere; G. Verth; I. V. Zimovets


Monthly Notices of the Royal Astronomical Society | 2015

Hilbert–Huang transform analysis of periodicities in the last two solar activity cycles

Dmitrii Y. Kolotkov; Anne-Marie Broomhall; V. M. Nakariakov

Collaboration


Dive into the Dmitrii Y. Kolotkov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge