Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dmitry A. Ravcheev is active.

Publication


Featured researches published by Dmitry A. Ravcheev.


BMC Genomics | 2013

RegPrecise 3.0 – A resource for genome-scale exploration of transcriptional regulation in bacteria

Pavel S. Novichkov; Alexey E. Kazakov; Dmitry A. Ravcheev; Semen A. Leyn; Galina Yu Kovaleva; Roman A. Sutormin; Marat D. Kazanov; William J Riehl; Adam P. Arkin; Inna Dubchak; Dmitry A. Rodionov

BackgroundGenome-scale prediction of gene regulation and reconstruction of transcriptional regulatory networks in prokaryotes is one of the critical tasks of modern genomics. Bacteria from different taxonomic groups, whose lifestyles and natural environments are substantially different, possess highly diverged transcriptional regulatory networks. The comparative genomics approaches are useful for in silico reconstruction of bacterial regulons and networks operated by both transcription factors (TFs) and RNA regulatory elements (riboswitches).DescriptionRegPrecise (http://regprecise.lbl.gov) is a web resource for collection, visualization and analysis of transcriptional regulons reconstructed by comparative genomics. We significantly expanded a reference collection of manually curated regulons we introduced earlier. RegPrecise 3.0 provides access to inferred regulatory interactions organized by phylogenetic, structural and functional properties. Taxonomy-specific collections include 781 TF regulogs inferred in more than 160 genomes representing 14 taxonomic groups of Bacteria. TF-specific collections include regulogs for a selected subset of 40 TFs reconstructed across more than 30 taxonomic lineages. Novel collections of regulons operated by RNA regulatory elements (riboswitches) include near 400 regulogs inferred in 24 bacterial lineages. RegPrecise 3.0 provides four classifications of the reference regulons implemented as controlled vocabularies: 55 TF protein families; 43 RNA motif families; ~150 biological processes or metabolic pathways; and ~200 effectors or environmental signals. Genome-wide visualization of regulatory networks and metabolic pathways covered by the reference regulons are available for all studied genomes. A separate section of RegPrecise 3.0 contains draft regulatory networks in 640 genomes obtained by an conservative propagation of the reference regulons to closely related genomes.ConclusionsRegPrecise 3.0 gives access to the transcriptional regulons reconstructed in bacterial genomes. Analytical capabilities include exploration of: regulon content, structure and function; TF binding site motifs; conservation and variations in genome-wide regulatory networks across all taxonomic groups of Bacteria. RegPrecise 3.0 was selected as a core resource on transcriptional regulation of the Department of Energy Systems Biology Knowledgebase, an emerging software and data environment designed to enable researchers to collaboratively generate, test and share new hypotheses about gene and protein functions, perform large-scale analyses, and model interactions in microbes, plants, and their communities.


Bioinformatics | 2005

A Gibbs sampler for identification of symmetrically structured, spaced DNA motifs with improved estimation of the signal length

Alexander V. Favorov; Mikhail S. Gelfand; Anna V. Gerasimova; Dmitry A. Ravcheev; Andrey A. Mironov; Vsevolod J. Makeev

MOTIVATION Transcription regulatory protein factors often bind DNA as homo-dimers or hetero-dimers. Thus they recognize structured DNA motifs that are inverted or direct repeats or spaced motif pairs. However, these motifs are often difficult to identify owing to their high divergence. The motif structure included explicitly into the motif recognition algorithm improves recognition efficiency for highly divergent motifs as well as estimation of motif geometric parameters. RESULT We present a modification of the Gibbs sampling motif extraction algorithm, SeSiMCMC (Sequence Similarities by Markov Chain Monte Carlo), which finds structured motifs of these types, as well as non-structured motifs, in a set of unaligned DNA sequences. It employs improved estimators of motif and spacer lengths. The probability that a sequence does not contain any motif is accounted for in a rigorous Bayesian manner. We have applied the algorithm to a set of upstream regions of genes from two Escherichia coli regulons involved in respiration. We have demonstrated that accounting for a symmetric motif structure allows the algorithm to identify weak motifs more accurately. In the examples studied, ArcA binding sites were demonstrated to have the structure of a direct spaced repeat, whereas NarP binding sites exhibited the palindromic structure. AVAILABILITY The WWW interface of the program, its FreeBSD (4.0) and Windows 32 console executables are available at http://bioinform.genetika.ru/SeSiMCMC


Nature Biotechnology | 2016

Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota

Stefania Magnusdottir; Almut Katrin Heinken; Laura Kutt; Dmitry A. Ravcheev; Eugen Bauer; Alberto Noronha; Kacy Greenhalgh; Christian Jäger; Joanna Baginska; Paul Wilmes; Ronan M. T. Fleming; Ines Thiele

Genome-scale metabolic models derived from human gut metagenomic data can be used as a framework to elucidate how microbial communities modulate human metabolism and health. We present AGORA (assembly of gut organisms through reconstruction and analysis), a resource of genome-scale metabolic reconstructions semi-automatically generated for 773 human gut bacteria. Using this resource, we identified a defined growth medium for Bacteroides caccae ATCC 34185. We also showed that interactions among modeled species depend on both the metabolic potential of each species and the nutrients available. AGORA reconstructions can integrate either metagenomic or 16S rRNA sequencing data sets to infer the metabolic diversity of microbial communities. AGORA reconstructions could provide a starting point for the generation of high-quality, manually curated metabolic reconstructions. AGORA is fully compatible with Recon 2, a comprehensive metabolic reconstruction of human metabolism, which will facilitate studies of host–microbiome interactions.


Frontiers in Genetics | 2015

Systematic genome assessment of B-vitamin biosynthesis suggests co-operation among gut microbes

Stefania Magnusdottir; Dmitry A. Ravcheev; Valérie de Crécy-Lagard; Ines Thiele

The human gut microbiota supplies its host with essential nutrients, including B-vitamins. Using the PubSEED platform, we systematically assessed the genomes of 256 common human gut bacteria for the presence of biosynthesis pathways for eight B-vitamins: biotin, cobalamin, folate, niacin, pantothenate, pyridoxine, riboflavin, and thiamin. On the basis of the presence and absence of genome annotations, we predicted that each of the eight vitamins was produced by 40–65% of the 256 human gut microbes. The distribution of synthesis pathways was diverse; some genomes had all eight biosynthesis pathways, whereas others contained no de novo synthesis pathways. We compared our predictions to experimental data from 16 organisms and found 88% of our predictions to be in agreement with published data. In addition, we identified several pairs of organisms whose vitamin synthesis pathway pattern complemented those of other organisms. This analysis suggests that human gut bacteria actively exchange B-vitamins among each other, thereby enabling the survival of organisms that do not synthesize any of these essential cofactors. This result indicates the co-evolution of the gut microbes in the human gut environment. Our work presents the first comprehensive assessment of the B-vitamin synthesis capabilities of the human gut microbiota. We propose that in addition to diet, the gut microbiota is an important source of B-vitamins, and that changes in the gut microbiota composition can severely affect our dietary B-vitamin requirements.


Journal of Bacteriology | 2012

Transcriptional Regulation of Central Carbon and Energy Metabolism in Bacteria by Redox-Responsive Repressor Rex

Dmitry A. Ravcheev; Xiaoqing Li; Haythem Latif; Karsten Zengler; Semen A. Leyn; Yuri D. Korostelev; Alexey E. Kazakov; Pavel S. Novichkov; Andrei L. Osterman; Dmitry A. Rodionov

Redox-sensing repressor Rex was previously implicated in the control of anaerobic respiration in response to the cellular NADH/NAD(+) levels in gram-positive bacteria. We utilized the comparative genomics approach to infer candidate Rex-binding DNA motifs and assess the Rex regulon content in 119 genomes from 11 taxonomic groups. Both DNA-binding and NAD-sensing domains are broadly conserved in Rex orthologs identified in the phyla Firmicutes, Thermotogales, Actinobacteria, Chloroflexi, Deinococcus-Thermus, and Proteobacteria. The identified DNA-binding motifs showed significant conservation in these species, with the only exception detected in Clostridia, where the Rex motif deviates in two positions from the generalized consensus, TTGTGAANNNNTTCACAA. Comparative analysis of candidate Rex sites revealed remarkable variations in functional repertoires of candidate Rex-regulated genes in various microorganisms. Most of the reconstructed regulatory interactions are lineage specific, suggesting frequent events of gain and loss of regulator binding sites in the evolution of Rex regulons. We identified more than 50 novel Rex-regulated operons encoding functions that are essential for resumption of the NADH:NAD(+) balance. The novel functional role of Rex in the control of the central carbon metabolism and hydrogen production genes was validated by in vitro DNA binding assays using the TM0169 protein in the hydrogen-producing bacterium Thermotoga maritima.


BMC Genomics | 2011

Comparative genomic reconstruction of transcriptional networks controlling central metabolism in the Shewanella genus

Dmitry A. Rodionov; Pavel S. Novichkov; Elena D. Stavrovskaya; Irina A. Rodionova; Xiaoqing Li; Marat D. Kazanov; Dmitry A. Ravcheev; Anna V. Gerasimova; Alexey E. Kazakov; Galina Yu Kovaleva; Elizabeth A. Permina; Olga N. Laikova; Ross Overbeek; Margaret F. Romine; James K. Fredrickson; Adam P. Arkin; Inna Dubchak; Andrei L. Osterman; Mikhail S. Gelfand

BackgroundGenome-scale prediction of gene regulation and reconstruction of transcriptional regulatory networks in bacteria is one of the critical tasks of modern genomics. The Shewanella genus is comprised of metabolically versatile gamma-proteobacteria, whose lifestyles and natural environments are substantially different from Escherichia coli and other model bacterial species. The comparative genomics approaches and computational identification of regulatory sites are useful for the in silico reconstruction of transcriptional regulatory networks in bacteria.ResultsTo explore conservation and variations in the Shewanella transcriptional networks we analyzed the repertoire of transcription factors and performed genomics-based reconstruction and comparative analysis of regulons in 16 Shewanella genomes. The inferred regulatory network includes 82 transcription factors and their DNA binding sites, 8 riboswitches and 6 translational attenuators. Forty five regulons were newly inferred from the genome context analysis, whereas others were propagated from previously characterized regulons in the Enterobacteria and Pseudomonas spp.. Multiple variations in regulatory strategies between the Shewanella spp. and E. coli include regulon contraction and expansion (as in the case of PdhR, HexR, FadR), numerous cases of recruiting non-orthologous regulators to control equivalent pathways (e.g. PsrA for fatty acid degradation) and, conversely, orthologous regulators to control distinct pathways (e.g. TyrR, ArgR, Crp).ConclusionsWe tentatively defined the first reference collection of ~100 transcriptional regulons in 16 Shewanella genomes. The resulting regulatory network contains ~600 regulated genes per genome that are mostly involved in metabolism of carbohydrates, amino acids, fatty acids, vitamins, metals, and stress responses. Several reconstructed regulons including NagR for N-acetylglucosamine catabolism were experimentally validated in S. oneidensis MR-1. Analysis of correlations in gene expression patterns helps to interpret the reconstructed regulatory network. The inferred regulatory interactions will provide an additional regulatory constrains for an integrated model of metabolism and regulation in S. oneidensis MR-1.


Journal of Bacteriology | 2009

Comparative Genomics of Ethanolamine Utilization

Olga V. Tsoy; Dmitry A. Ravcheev; Arcady Mushegian

Ethanolamine can be used as a source of carbon and nitrogen by phylogenetically diverse bacteria. Ethanolamine-ammonia lyase, the enzyme that breaks ethanolamine into acetaldehyde and ammonia, is encoded by the gene tandem eutBC. Despite extensive studies of ethanolamine utilization in Salmonella enterica serovar Typhimurium, much remains to be learned about EutBC structure and catalytic mechanism, about the evolutionary origin of ethanolamine utilization, and about regulatory links between the metabolism of ethanolamine itself and the ethanolamine-ammonia lyase cofactor adenosylcobalamin. We used computational analysis of sequences, structures, genome contexts, and phylogenies of ethanolamine-ammonia lyases to address these questions and to evaluate recent data-mining studies that have suggested an association between bacterial food poisoning and the diol utilization pathways. We found that EutBC evolution included recruitment of a TIM barrel and a Rossmann fold domain and their fusion to N-terminal alpha-helical domains to give EutB and EutC, respectively. This fusion was followed by recruitment and occasional loss of auxiliary ethanolamine utilization genes in Firmicutes and by several horizontal transfers, most notably from the firmicute stem to the Enterobacteriaceae and from Alphaproteobacteria to Actinobacteria. We identified a conserved DNA motif that likely represents the EutR-binding site and is shared by the ethanolamine and cobalamin operons in several enterobacterial species, suggesting a mechanism for coupling the biosyntheses of apoenzyme and cofactor in these species. Finally, we found that the food poisoning phenotype is associated with the structural components of metabolosome more strongly than with ethanolamine utilization genes or with paralogous propanediol utilization genes per se.


BMC Genomics | 2013

Polysaccharides utilization in human gut bacterium Bacteroides thetaiotaomicron: comparative genomics reconstruction of metabolic and regulatory networks

Dmitry A. Ravcheev; Adam Godzik; Andrei L. Osterman; Dmitry A. Rodionov

BackgroundBacteroides thetaiotaomicron, a predominant member of the human gut microbiota, is characterized by its ability to utilize a wide variety of polysaccharides using the extensive saccharolytic machinery that is controlled by an expanded repertoire of transcription factors (TFs). The availability of genomic sequences for multiple Bacteroides species opens an opportunity for their comparative analysis to enable characterization of their metabolic and regulatory networks.ResultsA comparative genomics approach was applied for the reconstruction and functional annotation of the carbohydrate utilization regulatory networks in 11 Bacteroides genomes. Bioinformatics analysis of promoter regions revealed putative DNA-binding motifs and regulons for 31 orthologous TFs in the Bacteroides. Among the analyzed TFs there are 4 SusR-like regulators, 16 AraC-like hybrid two-component systems (HTCSs), and 11 regulators from other families. Novel DNA motifs of HTCSs and SusR-like regulators in the Bacteroides have the common structure of direct repeats with a long spacer between two conserved sites.ConclusionsThe inferred regulatory network in B. thetaiotaomicron contains 308 genes encoding polysaccharide and sugar catabolic enzymes, carbohydrate-binding and transport systems, and TFs. The analyzed TFs control pathways for utilization of host and dietary glycans to monosaccharides and their further interconversions to intermediates of the central metabolism. The reconstructed regulatory network allowed us to suggest and refine specific functional assignments for sugar catabolic enzymes and transporters, providing a substantial improvement to the existing metabolic models for B. thetaiotaomicron. The obtained collection of reconstructed TF regulons is available in the RegPrecise database (http://regprecise.lbl.gov).


Journal of Bacteriology | 2011

Inference of the Transcriptional Regulatory Network in Staphylococcus aureus by Integration of Experimental and Genomics-Based Evidence

Dmitry A. Ravcheev; Aaron A. Best; Nathan L. Tintle; Matthew DeJongh; Andrei L. Osterman; Pavel S. Novichkov; Dmitry A. Rodionov

Transcriptional regulatory networks are fine-tuned systems that help microorganisms respond to changes in the environment and cell physiological state. We applied the comparative genomics approach implemented in the RegPredict Web server combined with SEED subsystem analysis and available information on known regulatory interactions for regulatory network reconstruction for the human pathogen Staphylococcus aureus and six related species from the family Staphylococcaceae. The resulting reference set of 46 transcription factor regulons contains more than 1,900 binding sites and 2,800 target genes involved in the central metabolism of carbohydrates, amino acids, and fatty acids; respiration; the stress response; metal homeostasis; drug and metal resistance; and virulence. The inferred regulatory network in S. aureus includes ∼320 regulatory interactions between 46 transcription factors and ∼550 candidate target genes comprising 20% of its genome. We predicted ∼170 novel interactions and 24 novel regulons for the control of the central metabolic pathways in S. aureus. The reconstructed regulons are largely variable in the Staphylococcaceae: only 20% of S. aureus regulatory interactions are conserved across all studied genomes. We used a large-scale gene expression data set for S. aureus to assess relationships between the inferred regulons and gene expression patterns. The predicted reference set of regulons is captured within the Staphylococcus collection in the RegPrecise database (http://regprecise.lbl.gov).


Journal of Bacteriology | 2014

Redox-Responsive Repressor Rex Modulates Alcohol Production and Oxidative Stress Tolerance in Clostridium acetobutylicum

Lei Zhang; Xiaoqun Nie; Dmitry A. Ravcheev; Dmitry A. Rodionov; Jia Sheng; Yang Gu; Sheng Yang; Weihong Jiang; Chen Yang

Rex, a transcriptional repressor that modulates its DNA-binding activity in response to NADH/NAD(+) ratio, has recently been found to play a role in the solventogenic shift of Clostridium acetobutylicum. Here, we combined a comparative genomic reconstruction of Rex regulons in 11 diverse clostridial species with detailed experimental characterization of Rex-mediated regulation in C. acetobutylicum. The reconstructed Rex regulons in clostridia included the genes involved in fermentation, hydrogen production, the tricarboxylic acid cycle, NAD biosynthesis, nitrate and sulfite reduction, and CO2/CO fixation. The predicted Rex-binding sites in the genomes of Clostridium spp. were verified by in vitro binding assays with purified Rex protein. Novel members of the C. acetobutylicum Rex regulon were identified and experimentally validated by comparing the transcript levels between the wild-type and rex-inactivated mutant strains. Furthermore, the effects of exposure to methyl viologen or H2O2 on intracellular NADH and NAD(+) concentrations, expression of Rex regulon genes, and physiology of the wild type and rex-inactivated mutant were comparatively analyzed. Our results indicate that Rex responds to NADH/NAD(+) ratio in vivo to regulate gene expression and modulates fermentation product formation and oxidative stress tolerance in C. acetobutylicum. It is suggested that Rex plays an important role in maintaining NADH/NAD(+) homeostasis in clostridia.

Collaboration


Dive into the Dmitry A. Ravcheev's collaboration.

Top Co-Authors

Avatar

Dmitry A. Rodionov

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ines Thiele

University of Luxembourg

View shared research outputs
Top Co-Authors

Avatar

Pavel S. Novichkov

Children's Hospital Oakland Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexey E. Kazakov

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Inna A. Suvorova

Russian Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge