Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dmitry Borkin is active.

Publication


Featured researches published by Dmitry Borkin.


Nature Medicine | 2015

Targeting the MLL complex in castration resistant prostate cancer

Rohit Malik; Amjad P. Khan; Irfan A. Asangani; Marcin Cieślik; John R. Prensner; Xiaoju Wang; Matthew K. Iyer; Xia Jiang; Dmitry Borkin; June Escara-Wilke; Rachell Stender; Yi-Mi Wu; Yashar S. Niknafs; Xiaojun Jing; Yuanyuan Qiao; Nallasivam Palanisamy; Lakshmi P. Kunju; Pranathi Meda Krishnamurthy; Anastasia K. Yocum; Dattatreya Mellacheruvu; Alexey I. Nesvizhskii; Xuhong Cao; Saravana M. Dhanasekaran; Felix Y. Feng; Jolanta Grembecka; Tomasz Cierpicki; Arul M. Chinnaiyan

Resistance to androgen deprivation therapies and increased androgen receptor (AR) activity are major drivers of castration-resistant prostate cancer (CRPC). Although prior work has focused on targeting AR directly, co-activators of AR signaling, which may represent new therapeutic targets, are relatively underexplored. Here we demonstrate that the mixed-lineage leukemia protein (MLL) complex, a well-known driver of MLL fusion–positive leukemia, acts as a co-activator of AR signaling. AR directly interacts with the MLL complex via the menin–MLL subunit. Menin expression is higher in CRPC than in both hormone-naive prostate cancer and benign prostate tissue, and high menin expression correlates with poor overall survival of individuals diagnosed with prostate cancer. Treatment with a small-molecule inhibitor of menin–MLL interaction blocks AR signaling and inhibits the growth of castration-resistant tumors in vivo in mice. Taken together, this work identifies the MLL complex as a crucial co-activator of AR and a potential therapeutic target in advanced prostate cancer.


Cancer Cell | 2017

Eradication of Tumors through Simultaneous Ablation of CD276/B7-H3-Positive Tumor Cells and Tumor Vasculature

Steven Seaman; Zhongyu Zhu; Saurabh Saha; Xiaoyan M. Zhang; Mi Young Yang; Mary Beth Hilton; Karen Morris; Christopher S. Szot; Holly Morris; Deborah A. Swing; Lino Tessarollo; Sean Smith; Sylvia Degrado; Dmitry Borkin; Nareshkumar Jain; Julia Scheiermann; Yang Feng; Yanping Wang; Jinyu Li; Dean Welsch; Gary A Decrescenzo; Amit Kumar Chaudhary; Enrique Zudaire; Kimberly D. Klarmann; Jonathan R. Keller; Dimiter S. Dimitrov; Brad St. Croix

Targeting the tumor vasculature with antibody-drug conjugates (ADCs) is a promising anti-cancer strategy that in order to be realized must overcome several obstacles, including identification of suitable targets and optimal warheads. Here, we demonstrate that the cell-surface protein CD276/B7-H3 is broadly overexpressed by multiple tumor types on both cancer cells and tumor-infiltrating blood vessels, making it a potentially ideal dual-compartment therapeutic target. In preclinical studies CD276 ADCs armed with a conventional MMAE warhead destroyed CD276-positive cancer cells, but were ineffective against tumor vasculature. In contrast, pyrrolobenzodiazepine-conjugated CD276 ADCs killed both cancer cells and tumor vasculature, eradicating large established tumors and metastases, and improving long-term overall survival. CD276-targeted dual-compartment ablation could aid in the development of highly selective broad-acting anti-cancer therapies.


Journal of Medicinal Chemistry | 2015

Rational Design of Orthogonal Multipolar Interactions with Fluorine in Protein-Ligand Complexes.

Jonathan Pollock; Dmitry Borkin; George Lund; Trupta Purohit; Edyta Dyguda-Kazimierowicz; Jolanta Grembecka; Tomasz Cierpicki

Multipolar interactions involving fluorine and the protein backbone have been frequently observed in protein–ligand complexes. Such fluorine–backbone interactions may substantially contribute to the high affinity of small molecule inhibitors. Here we found that introduction of trifluoromethyl groups into two different sites in the thienopyrimidine class of menin–MLL inhibitors considerably improved their inhibitory activity. In both cases, trifluoromethyl groups are engaged in short interactions with the backbone of menin. In order to understand the effect of fluorine, we synthesized a series of analogues by systematically changing the number of fluorine atoms, and we determined high-resolution crystal structures of the complexes with menin. We found that introduction of fluorine at favorable geometry for interactions with backbone carbonyls may improve the activity of menin–MLL inhibitors as much as 5- to 10-fold. In order to facilitate the design of multipolar fluorine–backbone interactions in protein–ligand complexes, we developed a computational algorithm named FMAP, which calculates fluorophilic sites in proximity to the protein backbone. We demonstrated that FMAP could be used to rationalize improvement in the activity of known protein inhibitors upon introduction of fluorine. Furthermore, FMAP may also represent a valuable tool for designing new fluorine substitutions and support ligand optimization in drug discovery projects. Analysis of the menin–MLL inhibitor complexes revealed that the backbone in secondary structures is particularly accessible to the interactions with fluorine. Considering that secondary structure elements are frequently exposed at protein interfaces, we postulate that multipolar fluorine–backbone interactions may represent a particularly attractive approach to improve inhibitors of protein–protein interactions.


ACS Chemical Biology | 2015

Inhibition of CDC25B Phosphatase Through Disruption of Protein–Protein Interaction

George Lund; Sergii Dudkin; Dmitry Borkin; Wendi Ni; Jolanta Grembecka; Tomasz Cierpicki

CDC25 phosphatases are key cell cycle regulators and represent very attractive but challenging targets for anticancer drug discovery. Here, we explored whether fragment-based screening represents a valid approach to identify inhibitors of CDC25B. This resulted in identification of 2-fluoro-4-hydroxybenzonitrile, which directly binds to the catalytic domain of CDC25B. Interestingly, NMR data and the crystal structure demonstrate that this compound binds to the pocket distant from the active site and adjacent to the protein–protein interaction interface with CDK2/Cyclin A substrate. Furthermore, we developed a more potent analogue that disrupts CDC25B interaction with CDK2/Cyclin A and inhibits dephosphorylation of CDK2. Based on these studies, we provide a proof of concept that targeting CDC25 phosphatases by inhibiting their protein–protein interactions with CDK2/Cyclin A substrate represents a novel, viable opportunity to target this important class of enzymes.


Journal of Medicinal Chemistry | 2016

Property Focused Structure-Based Optimization of Small Molecule Inhibitors of the Protein-Protein Interaction between Menin and Mixed Lineage Leukemia (MLL).

Dmitry Borkin; Jonathan Pollock; Katarzyna Kempinska; Trupta Purohit; Xiaoqin Li; Bo Wen; Ting Zhao; Hongzhi Miao; Shirish Shukla; Miao He; Duxin Sun; Tomasz Cierpicki; Jolanta Grembecka

Development of potent small molecule inhibitors of protein-protein interactions with optimized druglike properties represents a challenging task in lead optimization process. Here, we report synthesis and structure-based optimization of new thienopyrimidine class of compounds, which block the protein-protein interaction between menin and MLL fusion proteins that plays an important role in acute leukemias with MLL translocations. We performed simultaneous optimization of both activity and druglike properties through systematic exploration of substituents introduced to the indole ring of lead compound 1 (MI-136) to identify compounds suitable for in vivo studies in mice. This work resulted in the identification of compound 27 (MI-538), which showed significantly increased activity, selectivity, polarity, and pharmacokinetic profile over 1 and demonstrated a pronounced effect in a mouse model of MLL leukemia. This study, which reports detailed structure-activity and structure-property relationships for the menin-MLL inhibitors, demonstrates challenges in optimizing inhibitors of protein-protein interactions for potential therapeutic applications.


Leukemia | 2016

Menin-MLL inhibitors block oncogenic transformation by MLL fusion proteins in a fusion partner independent manner

Shihan He; Bhavna Malik; Dmitry Borkin; Hongzhi Miao; Shirish Shukla; Katarzyna Kempinska; Trupta Purohit; Jingya Wang; Lili Chen; Brian Parkin; Sami N. Malek; Gwenn Danet-Desnoyers; Andrew G. Muntean; Tomasz Cierpicki; Jolanta Grembecka

Menin-MLL inhibitors block oncogenic transformation by MLL-fusion proteins in a fusion partner-independent manner


Oncotarget | 2017

Tumorigenicity of Ewing sarcoma is critically dependent on the trithorax proteins MLL1 and menin

Laurie K. Svoboda; Natashay Bailey; Raelene A. Van Noord; Melanie A. Krook; Ashley Harris; Cassondra Cramer; Brooke Jasman; Rajiv M. Patel; Dafydd G. Thomas; Dmitry Borkin; Tomasz Cierpicki; Jolanta Grembecka; Elizabeth R. Lawlor

Developmental transcription programs are epigenetically regulated by the competing actions of polycomb and trithorax (TrxG) protein complexes, which repress and activate genes, respectively. Ewing sarcoma is a developmental tumor that is associated with widespread de-regulation of developmental transcription programs, including HOX programs. Posterior HOXD genes are abnormally over-expressed by Ewing sarcoma and HOXD13, in particular, contributes to the tumorigenic phenotype. In MLL1 fusion-driven leukemia, aberrant activation of HOXA genes is epigenetically mediated by the TrxG complex and HOXA gene expression and leukemogenesis are critically dependent on the protein-protein interaction between the TrxG proteins MLL1 and menin. Based on these data, we investigated whether posterior HOXD gene activation and Ewing sarcoma tumorigenicity are similarly mediated by and dependent on MLL1 and/or menin. Our findings demonstrate that Ewing sarcomas express high levels of both MLL1 and menin and that continued expression of both proteins is required for maintenance of tumorigenicity. In addition, exposure of Ewing sarcoma cells to MI-503, an inhibitor of the MLL1-menin protein-protein interaction developed for MLL1-fusion driven leukemia, leads to loss of tumorigenicity and down-regulated expression of the posterior HOXD gene cluster. Together these data demonstrate an essential role for MLL1 and menin in mediating tumor maintenance and posterior HOXD gene activation in Ewing sarcoma. A critical dependency of these tumors on the MLL1-menin interaction presents a potentially novel therapeutic target.


Molecular Cancer Therapeutics | 2018

Pharmacologic Inhibition of the Menin–MLL Interaction Leads to Transcriptional Repression of PEG10 and Blocks Hepatocellular Carcinoma

Katarzyna Kempinska; Bhavna Malik; Dmitry Borkin; Szymon Klossowski; Shirish Shukla; Hongzhi Miao; Jingya Wang; Tomasz Cierpicki; Jolanta Grembecka

Hepatocellular carcinoma (HCC) accounts for approximately 85% of malignant liver tumors and results in 600,000 deaths each year, emphasizing the need for new therapies. Upregulation of menin was reported in HCC patients and high levels of menin correlate with poor patient prognosis. The protein–protein interaction between menin and histone methyltransferase mixed lineage leukemia 1 (MLL1) plays an important role in the development of HCC, implying that pharmacologic inhibition of this interaction could lead to new therapeutic strategy for the HCC patients. Here, we demonstrate that the menin–MLL inhibitor MI-503 shows antitumor activity in in vitro and in vivo models of HCC and reveals the potential mechanism of menin contribution to HCC. Treatment with MI-503 selectively kills various HCC cell lines and this effect is significantly enhanced by a combination of MI-503 with sorafenib, the standard-of-care therapy for HCC. Furthermore, MI-503 reduces sphere formation and cell migration in in vitro HCC models. When applied in vivo, MI-503 gives a strong antitumor effect both as a single agent and in combination with sorafenib in mice xenograft models of HCC. Mechanistically, treatment with MI-503 downregulates expression of several genes known to play a critical role in proliferation and migration of HCC cells, including PEG10, and displaces the menin–MLL1 complex from the PEG10 promoter, resulting in reduced H3K4 methylation and transcriptional repression. Overall, our studies reveal a mechanistic link between menin and genes involved in HCC and demonstrate that pharmacologic inhibition of the menin–MLL interaction might represent a promising therapeutic approach for HCC. Mol Cancer Ther; 17(1); 26–38. ©2017 AACR.


ACS Medicinal Chemistry Letters | 2018

Design and Synthesis of Isoquinolidinobenzodiazepine Dimers, a Novel Class of Antibody-Drug Conjugate Payload

Sean Smith; Vasu Jammalamadaka; Dmitry Borkin; Jianyu Zhu; Sylvia Degrado; Jennifer Lu; J. Huang; Ying-Ping Jiang; Nareshkumar Jain; Jagath R. Junutula

Antibody-drug conjugates (ADCs) represent an important class of emerging cancer therapeutics. Recent ADC development efforts highlighted the use of pyrrolobenzodiazepine (PBD) dimer payload for the treatment of several cancers. We identified the isoquinolidinobenzodiazepine (IQB) payload (D211), a new class of PBD dimer family of DNA damaging payloads. We have successfully synthesized all three IQB stereoisomers, experimentally showed that the purified (S,S)-D211 isomer is functionally more active than (R,R)-D221 and (S,R)-D231 isomers by >50,000-fold and ∼200-fold, respectively. We also synthesized a linker-payload (D212) that uses (S,S)-D211 payload with a cathepsin cleavable linker, a hydrophilic PEG8 spacer, and a thiol reactive maleimide. In addition, homogeneous ADCs generated using D212 linker-payload exhibited ideal physicochemical properties, and anti-CD33 ADC displayed a robust target-specific potency on AML cell lines. These results demonstrate that D212 linker-payload described here can be utilized for developing novel ADC therapeutics for targeted cancer therapy.


Journal of Medicinal Chemistry | 2018

Complexity of Blocking Bivalent Protein–Protein Interactions: Development of a Highly Potent Inhibitor of the Menin–Mixed-Lineage Leukemia Interaction

Dmitry Borkin; Szymon Klossowski; Jonathan Pollock; Hongzhi Miao; Brian M. Linhares; Katarzyna Kempinska; Zhuang Jin; Trupta Purohit; Bo Wen; Miao He; Duxin Sun; Tomasz Cierpicki; Jolanta Grembecka

The protein-protein interaction between menin and mixed-lineage leukemia 1 (MLL1) plays an important role in development of acute leukemia with translocations of the MLL1 gene and in solid tumors. Here, we report the development of a new generation of menin-MLL1 inhibitors identified by structure-based optimization of the thienopyrimidine class of compounds. This work resulted in compound 28 (MI-1481), which showed very potent inhibition of the menin-MLL1 interaction (IC50 = 3.6 nM), representing the most potent reversible menin-MLL1 inhibitor reported to date. The crystal structure of the menin-28 complex revealed a hydrogen bond with Glu366 and hydrophobic interactions, which contributed to strong inhibitory activity of 28. Compound 28 also demonstrates pronounced activity in MLL leukemia cells and in vivo in MLL leukemia models. Thus, 28 is a valuable menin-MLL1 inhibitor that can be used for potential therapeutic applications and in further studies regarding the role of menin in cancer.

Collaboration


Dive into the Dmitry Borkin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Duxin Sun

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bo Wen

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

Jingya Wang

University of Michigan

View shared research outputs
Researchain Logo
Decentralizing Knowledge