Jolanta Grembecka
University of Michigan
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jolanta Grembecka.
Nature Chemical Biology | 2012
Jolanta Grembecka; Shihan He; Aibin Shi; Trupta Purohit; Andrew G. Muntean; Roderick Joseph Sorenson; H. D. Hollis Showalter; Marcelo J. Murai; Amalia Marie Belcher; Thomas Hartley; Jay L. Hess; Tomasz Cierpicki
Translocations involving the mixed lineage leukemia (MLL) gene result in human acute leukemias with very poor prognosis. The leukemogenic activity of MLL fusion proteins is critically dependent on their direct interaction with menin, a product of the multiple endocrine neoplasia (MEN1) gene. Here we present what are to our knowledge the first small-molecule inhibitors of the menin-MLL fusion protein interaction that specifically bind menin with nanomolar affinities. These compounds effectively reverse MLL fusion protein-mediated leukemic transformation by downregulating the expression of target genes required for MLL fusion protein oncogenic activity. They also selectively block proliferation and induce both apoptosis and differentiation of leukemia cells harboring MLL translocations. Identification of these compounds provides a new tool for better understanding MLL-mediated leukemogenesis and represents a new approach for studying the role of menin as an oncogenic cofactor of MLL fusion proteins. Our findings also highlight a new therapeutic strategy for aggressive leukemias with MLL rearrangements.
Blood | 2012
Aibin Shi; Marcelo J. Murai; Shihan He; George Lund; Thomas Hartley; Trupta Purohit; Gireesh Reddy; Maksymilian Chruszcz; Jolanta Grembecka; Tomasz Cierpicki
Menin functions as a critical oncogenic cofactor of mixed lineage leukemia (MLL) fusion proteins in the development of acute leukemias, and inhibition of the menin interaction with MLL fusion proteins represents a very promising strategy to reverse their oncogenic activity. MLL interacts with menin in a bivalent mode involving 2 N-terminal fragments of MLL. In the present study, we reveal the first high-resolution crystal structure of human menin in complex with a small-molecule inhibitor of the menin-MLL interaction, MI-2. The structure shows that the compound binds to the MLL pocket in menin and mimics the key interactions of MLL with menin. Based on the menin-MI-2 structure, we developed MI-2-2, a compound that binds to menin with low nanomolar affinity (K(d) = 22nM) and very effectively disrupts the bivalent protein-protein interaction between menin and MLL. MI-2-2 demonstrated specific and very pronounced activity in MLL leukemia cells, including inhibition of cell proliferation, down-regulation of Hoxa9 expression, and differentiation. Our results provide the rational and essential structural basis to design next generation of inhibitors for effective targeting of the menin-MLL interaction in leukemia and demonstrate a proof of concept that inhibition of complex multivalent protein-protein interactions can be achieved by a small-molecule inhibitor.
PLOS ONE | 2013
Nicolai Kittan; Ronald M. Allen; Abhay Dhaliwal; Karen A. Cavassani; Matthew Schaller; Katherine Gallagher; William F. Carson; Sumanta Mukherjee; Jolanta Grembecka; Tomasz Cierpicki; Gabor Jarai; John Westwick; Steven L. Kunkel; Cory M. Hogaboam
Macrophages (MΦ) play an essential role in innate immune responses and can either display a pro-inflammatory, classically activated phenotype (M1) or undergo an alternative activation program (M2) promoting immune regulation. M-CSF is used to differentiate monocytes into MΦ and IFN-γ or IL-4+IL-13 to further polarize these cells towards M1 or M2, respectively. Recently, differentiation using only GM-CSF or M-CSF has been described to induce a M1- or M2-like phenotype, respectively. In this study, we combined both approaches by differentiating human MΦ in GM-CSF or M-CSF followed by polarization with either IFN-γ or IL-4+IL-13. We describe the phenotypic differences between CD14hi CD163hi CD206int FOLR2-expressing M-CSF MΦ and CD14lo CD163lo CD206hi GM-CSF MΦ but show that both macrophage populations reacted similarly to further polarization with IFN-γ or IL-4+IL-13 with up- and down-regulation of common M1 and M2 marker genes. We also show that high expression of the mannose receptor (CD206), a marker of alternative activation, is a distinct feature of GM-CSF MΦ. Changes of the chromatin structure carried out by chromatin modification enzymes (CME) have been shown to regulate myeloid differentiation. We analyzed the expression patterns of CME during MΦ polarization and show that M1 up-regulate the histone methyltransferase MLL and demethylase KDM6B, while resting and M2 MΦ were characterized by DNA methyltransferases and histone deacetylases. We demonstrate that MLL regulates CXCL10 expression and that this effect could be abrogated using a MLL-Menin inhibitor. Taken together we describe the distinct phenotypic differences of GM-CSF or M-CSF MΦ and demonstrate that MΦ polarization is regulated by specific epigenetic mechanisms. In addition, we describe a novel role for MLL as marker for classical activation. Our findings provide new insights into MΦ polarization that could be helpful to distinguish MΦ activation states.
Nature Medicine | 2015
Rohit Malik; Amjad P. Khan; Irfan A. Asangani; Marcin Cieślik; John R. Prensner; Xiaoju Wang; Matthew K. Iyer; Xia Jiang; Dmitry Borkin; June Escara-Wilke; Rachell Stender; Yi-Mi Wu; Yashar S. Niknafs; Xiaojun Jing; Yuanyuan Qiao; Nallasivam Palanisamy; Lakshmi P. Kunju; Pranathi Meda Krishnamurthy; Anastasia K. Yocum; Dattatreya Mellacheruvu; Alexey I. Nesvizhskii; Xuhong Cao; Saravana M. Dhanasekaran; Felix Y. Feng; Jolanta Grembecka; Tomasz Cierpicki; Arul M. Chinnaiyan
Resistance to androgen deprivation therapies and increased androgen receptor (AR) activity are major drivers of castration-resistant prostate cancer (CRPC). Although prior work has focused on targeting AR directly, co-activators of AR signaling, which may represent new therapeutic targets, are relatively underexplored. Here we demonstrate that the mixed-lineage leukemia protein (MLL) complex, a well-known driver of MLL fusion–positive leukemia, acts as a co-activator of AR signaling. AR directly interacts with the MLL complex via the menin–MLL subunit. Menin expression is higher in CRPC than in both hormone-naive prostate cancer and benign prostate tissue, and high menin expression correlates with poor overall survival of individuals diagnosed with prostate cancer. Treatment with a small-molecule inhibitor of menin–MLL interaction blocks AR signaling and inhibits the growth of castration-resistant tumors in vivo in mice. Taken together, this work identifies the MLL complex as a crucial co-activator of AR and a potential therapeutic target in advanced prostate cancer.
Journal of Biological Chemistry | 2011
Marcelo J. Murai; Maksymilian Chruszcz; Gireesh Reddy; Jolanta Grembecka; Tomasz Cierpicki
Menin is a tumor suppressor protein that is encoded by the MEN1 (multiple endocrine neoplasia 1) gene and controls cell growth in endocrine tissues. Importantly, menin also serves as a critical oncogenic cofactor of MLL (mixed lineage leukemia) fusion proteins in acute leukemias. Direct association of menin with MLL fusion proteins is required for MLL fusion protein-mediated leukemogenesis in vivo, and this interaction has been validated as a new potential therapeutic target for development of novel anti-leukemia agents. Here, we report the first crystal structure of menin homolog from Nematostella vectensis. Due to a very high sequence similarity, the Nematostella menin is a close homolog of human menin, and these two proteins likely have very similar structures. Menin is predominantly an α-helical protein with the protein core comprising three tetratricopeptide motifs that are flanked by two α-helical bundles and covered by a β-sheet motif. A very interesting feature of menin structure is the presence of a large central cavity that is highly conserved between Nematostella and human menin. By employing site-directed mutagenesis, we have demonstrated that this cavity constitutes the binding site for MLL. Our data provide a structural basis for understanding the role of menin as a tumor suppressor protein and as an oncogenic co-factor of MLL fusion proteins. It also provides essential structural information for development of inhibitors targeting the menin-MLL interaction as a novel therapeutic strategy in MLL-related leukemias.
Journal of Biological Chemistry | 2010
Jolanta Grembecka; Amalia Marie Belcher; Thomas Hartley; Tomasz Cierpicki
Chromosomal translocations targeting the mixed lineage leukemia (MLL) gene result in MLL fusion proteins that are found in aggressive human acute leukemias. Disruption of MLL by such translocations leads to overexpression of Hox genes, resulting in a blockage of hematopoietic differentiation that ultimately leads to leukemia. Menin, which directly binds MLL, has been identified as an essential oncogenic co-factor required for the leukemogenic activity of MLL fusion proteins. Here, we characterize the molecular basis of the MLL-menin interaction. Using 13C-detected NMR experiments, we have mapped the residues within the intrinsically unstructured fragment of MLL that are required for binding to menin. Interestingly, we found that MLL interacts with menin with a nanomolar affinity (Kd ∼ 10 nm) through two motifs, MBM1 and MBM2 (menin binding motifs 1 and 2). These motifs are located within the N-terminal 43-amino acid fragment of MLL, and the MBM1 represents a high affinity binding motif. Using alanine scanning mutagenesis of MBM1, we found that the hydrophobic residues Phe9, Pro10, and Pro13 are most critical for binding. Furthermore, based on exchange-transferred nuclear Overhauser effect measurements, we established that MBM1 binds to menin in an extended conformation. In a series of competition experiments we showed that a peptide corresponding to MBM1 efficiently dissociates the menin-MLL complex. Altogether, our work establishes the molecular basis of the menin interaction with MLL and MLL fusion proteins and provides the necessary foundation for development of small molecule inhibitors targeting this interaction in leukemias with MLL translocations.
Science | 2015
John A. Pulikkan; Hongliang Zong; Jolanta Grembecka; Liting Xue; Siddhartha Sen; Yunpeng Zhou; Adam Boulton; Aravinda Kuntimaddi; Yan Gao; Roger A. Rajewski; Monica L. Guzman; Lucio H. Castilla; John H. Bushweller
Toward drugging the undruggable in cancer Many human cancers are characterized by inappropriate activity of transcription factors. These proteins are attractive drug targets in principle, but normalizing their function requires drugs that modulate specific protein-protein interactions, a goal that has been challenging. In acute myeloid leukemia, a chromosomal translocation creates an aberrant form of the transcription factor CBF-beta, which outcompetes “normal” CBF-beta for binding to another transcription factor called RUNX1, thereby deregulating its activity. Illendula et al. identified and chemically optimized a small molecule that selectively disrupts the interaction between the aberrant CBF-beta and RUNX1 (see the Perspective by Koehler and Chen). This molecule restored normal gene expression patterns and delayed leukemia progression in mice. Thus, transcription factors may not be as undruggable as once thought. Science, this issue p. 779; see also p. 713 A small molecule inhibits leukemia in mice by targeting a transcription factor, a class of proteins thought to be undruggable. [Also see Perspective by Koehler and Chen] Acute myeloid leukemia (AML) is the most common form of adult leukemia. The transcription factor fusion CBFβ-SMMHC (core binding factor β and the smooth-muscle myosin heavy chain), expressed in AML with the chromosome inversion inv(16)(p13q22), outcompetes wild-type CBFβ for binding to the transcription factor RUNX1, deregulates RUNX1 activity in hematopoiesis, and induces AML. Current inv(16) AML treatment with nonselective cytotoxic chemotherapy results in a good initial response but limited long-term survival. Here, we report the development of a protein-protein interaction inhibitor, AI-10-49, that selectively binds to CBFβ-SMMHC and disrupts its binding to RUNX1. AI-10-49 restores RUNX1 transcriptional activity, displays favorable pharmacokinetics, and delays leukemia progression in mice. Treatment of primary inv(16) AML patient blasts with AI-10-49 triggers selective cell death. These data suggest that direct inhibition of the oncogenic CBFβ-SMMHC fusion protein may be an effective therapeutic approach for inv(16) AML, and they provide support for transcription factor targeted therapy in other cancers.
Journal of Medicinal Chemistry | 2014
Shihan He; Timothy J. Senter; Jonathan Pollock; Changho Han; Sunil K. Upadhyay; Trupta Purohit; Rocco D. Gogliotti; Craig W. Lindsley; Tomasz Cierpicki; Shaun R. Stauffer; Jolanta Grembecka
The protein–protein interaction (PPI) between menin and mixed lineage leukemia (MLL) plays a critical role in acute leukemias, and inhibition of this interaction represents a new potential therapeutic strategy for MLL leukemias. We report development of a novel class of small-molecule inhibitors of the menin–MLL interaction, the hydroxy- and aminomethylpiperidine compounds, which originated from HTS of ∼288000 small molecules. We determined menin–inhibitor co-crystal structures and found that these compounds closely mimic all key interactions of MLL with menin. Extensive crystallography studies combined with structure-based design were applied for optimization of these compounds, resulting in MIV-6R, which inhibits the menin–MLL interaction with IC50 = 56 nM. Treatment with MIV-6 demonstrated strong and selective effects in MLL leukemia cells, validating specific mechanism of action. Our studies provide novel and attractive scaffold as a new potential therapeutic approach for MLL leukemias and demonstrate an example of PPI amenable to inhibition by small molecules.
Immunological Reviews | 2015
Tomasz Cierpicki; Jolanta Grembecka
Over the past several years, there has been an increasing research effort focused on inhibition of protein–protein interactions (PPIs) to develop novel therapeutic approaches for cancer, including hematologic malignancies. These efforts have led to development of small molecule inhibitors of PPIs, some of which already advanced to the stage of clinical trials while others are at different stages of preclinical optimization, emphasizing PPIs as an emerging and attractive class of drug targets. Here, we review several examples of recently developed inhibitors of PPIs highly relevant to hematologic cancers. We address the existing skepticism about feasibility of targeting PPIs and emphasize potential therapeutic benefit from blocking PPIs in hematologic malignancies. We then use these examples to discuss the approaches for successful identification of PPI inhibitors and provide analysis of the protein–protein interfaces, with the goal to address ‘druggability’ of new PPIs relevant to hematology. We discuss lessons learned to improve the success of targeting new PPIs and evaluate prospects and limits of the research in this field. We conclude that not all PPIs are equally tractable for blocking by small molecules, and detailed analysis of PPI interfaces is critical for selection of those with the highest chance of success. Together, our analysis uncovers patterns that should help to advance drug discovery in hematologic malignancies by successful targeting of new PPIs.
Journal of Clinical Investigation | 2015
Morgan Jones; Jennifer Chase; Michelle L. Brinkmeier; Jing Xu; Julien Schira; Ann Friedman; Sami N. Malek; Jolanta Grembecka; Tomasz Cierpicki; Yali Dou; Sally A. Camper; Ivan Maillard
Rapidly cycling fetal and neonatal hematopoietic stem cells (HSCs) generate a pool of quiescent adult HSCs after establishing hematopoiesis in the bone marrow. We report an essential role for the trithorax group gene absent, small, or homeotic 1-like (Ash1l) at this developmental transition. Emergence and expansion of Ash1l-deficient fetal/neonatal HSCs were preserved; however, in young adult animals, HSCs were profoundly depleted. Ash1l-deficient adult HSCs had markedly decreased quiescence and reduced cyclin-dependent kinase inhibitor 1b/c (Cdkn1b/1c) expression and failed to establish long-term trilineage bone marrow hematopoiesis after transplantation to irradiated recipients. Wild-type HSCs could efficiently engraft when transferred to unirradiated, Ash1l-deficient recipients, indicating increased availability of functional HSC niches in these mice. Ash1l deficiency also decreased expression of multiple Hox genes in hematopoietic progenitors. Ash1l cooperated functionally with mixed-lineage leukemia 1 (Mll1), as combined loss of Ash1l and Mll1, but not isolated Ash1l or Mll1 deficiency, induced overt hematopoietic failure. Our results uncover a trithorax group gene network that controls quiescence, niche occupancy, and self-renewal potential in adult HSCs.