Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dmitry Terentyev is active.

Publication


Featured researches published by Dmitry Terentyev.


Circulation Research | 2008

Redox modification of ryanodine receptors contributes to sarcoplasmic reticulum Ca2+ leak in chronic heart failure.

Dmitry Terentyev; Inna Györke; Andriy E. Belevych; Radmila Terentyeva; Arun Sridhar; Yoshinori Nishijima; Esperanza Carcache de Blanco; Savita Khanna; Chandan K. Sen; Arturo J. Cardounel; Cynthia A. Carnes; Sandor Gyorke

Abnormal cardiac ryanodine receptor (RyR2) function is recognized as an important factor in the pathogenesis of heart failure (HF). However, the specific molecular causes underlying RyR2 defects in HF remain poorly understood. In the present study, we used a canine model of chronic HF to test the hypothesis that the HF-related alterations in RyR2 function are caused by posttranslational modification by reactive oxygen species generated in the failing heart. Experimental approaches included imaging of cytosolic ([Ca2+]c) and sarcoplasmic reticulum (SR) luminal Ca2+ ([Ca2+]SR) in isolated intact and permeabilized ventricular myocytes and single RyR2 channel recording using the planar lipid bilayer technique. The ratio of reduced to oxidized glutathione, as well as the level of free thiols on RyR2 decreased markedly in failing versus control hearts consistent with increased oxidative stress in HF. RyR2-mediated SR Ca2+ leak was significantly enhanced in permeabilized myocytes, resulting in reduced [Ca2+]SR in HF compared to control cells. Both SR Ca2+ leak and [Ca2+]SR were partially normalized by treating HF myocytes with reducing agents. Conversely, oxidizing agents accelerated SR Ca2+ leak and decreased [Ca2+]SR in cells from normal hearts. Moreover, exposure to antioxidants significantly improved intracellular Ca2+-handling parameters in intact HF myocytes. Single RyR2 channel activity was significantly higher in HF versus control because of increased sensitivity to activation by luminal Ca2+ and was partially normalized by reducing agents through restoring luminal Ca2+ sensitivity oxidation of control RyR2s enhanced their luminal Ca2+ sensitivity, thus reproducing the HF phenotype. These findings suggest that redox modification contributes to abnormal function of RyR2s in HF, presenting a potential therapeutic target for treating HF.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Calsequestrin determines the functional size and stability of cardiac intracellular calcium stores: Mechanism for hereditary arrhythmia.

Dmitry Terentyev; Serge Viatchenko-Karpinski; Inna Györke; Pompeo Volpe; Simon C. Williams; Sandor Gyorke

Calsequestrin is a high-capacity Ca-binding protein expressed inside the sarcoplasmic reticulum (SR), an intracellular Ca release and storage organelle in muscle. Mutations in the cardiac calsequestrin gene (CSQ2) have been linked to arrhythmias and sudden death. We have used Ca-imaging and patch-clamp methods in combination with adenoviral gene transfer strategies to explore the function of CSQ2 in adult rat heart cells. By increasing or decreasing CSQ2 levels, we showed that CSQ2 not only determines the Ca storage capacity of the SR but also positively controls the amount of Ca released from this organelle during excitation–contraction coupling. CSQ2 controls Ca release by prolonging the duration of Ca fluxes through the SR Ca-release sites. In addition, the dynamics of functional restitution of Ca-release sites after Ca discharge were prolonged when CSQ2 levels were elevated and accelerated in the presence of lowered CSQ2 protein levels. Furthermore, profound disturbances in rhythmic Ca transients in myocytes undergoing periodic electrical stimulation were observed when CSQ2 levels were reduced. We conclude that CSQ2 is a key determinant of the functional size and stability of SR Ca stores in cardiac muscle. CSQ2 appears to exert its effects by influencing the local luminal Ca concentration-dependent gating of the Ca-release channels and by acting as both a reservoir and a sink for Ca in SR. The abnormal restitution of Ca-release channels in the presence of reduced CSQ2 levels provides a plausible explanation for ventricular arrhythmia associated with mutations of CSQ2.


Circulation Research | 2009

miR-1 Overexpression Enhances Ca2+ Release and Promotes Cardiac Arrhythmogenesis by Targeting PP2A Regulatory Subunit B56α and Causing CaMKII-Dependent Hyperphosphorylation of RyR2

Dmitry Terentyev; Andriy E. Belevych; Radmila Terentyeva; Mickey M. Martin; Geraldine E. Malana; Donald E. Kuhn; Maha Abdellatif; David S. Feldman; Terry S. Elton; Sandor Gyorke

MicroRNAs are small endogenous noncoding RNAs that regulate protein expression by hybridization to imprecise complementary sequences of target mRNAs. Changes in abundance of muscle-specific microRNA, miR-1, have been implicated in cardiac disease, including arrhythmia and heart failure. However, the specific molecular targets and cellular mechanisms involved in the action of miR-1 in the heart are only beginning to emerge. In this study we investigated the effects of increased expression of miR-1 on excitation–contraction coupling and Ca2+ cycling in rat ventricular myocytes using methods of electrophysiology, Ca2+ imaging and quantitative immunoblotting. Adenoviral-mediated overexpression of miR-1 in myocytes resulted in a marked increase in the amplitude of the inward Ca2+ current, flattening of Ca2+ transients voltage dependence, and enhanced frequency of spontaneous Ca2+ sparks while reducing the sarcoplasmic reticulum Ca2+ content as compared with control. In the presence of isoproterenol, rhythmically paced, miR-1–overexpressing myocytes exhibited spontaneous arrhythmogenic oscillations of intracellular Ca2+, events that occurred rarely in control myocytes under the same conditions. The effects of miR-1 were completely reversed by the CaMKII inhibitor KN93. Although phosphorylation of phospholamban was not altered, miR-1 overexpression increased phosphorylation of the ryanodine receptor (RyR2) at S2814 (Ca2+/calmodulin-dependent protein kinase) but not at S2808 (protein kinase A). Overexpression of miR-1 was accompanied by a selective decrease in expression of the protein phosphatase PP2A regulatory subunit B56α involved in PP2A targeting to specialized subcellular domains. We conclude that miR-1 enhances cardiac excitation–contraction coupling by selectively increasing phosphorylation of the L-type and RyR2 channels via disrupting localization of PP2A activity to these channels.


Circulation Research | 2002

Luminal Ca2+ Controls Termination and Refractory Behavior of Ca2+-Induced Ca2+ Release in Cardiac Myocytes

Dmitry Terentyev; Serge Viatchenko-Karpinski; Héctor H. Valdivia; A. L. Escobar; Sandor Gyorke

Abstract— Despite extensive research, the mechanisms responsible for the graded nature and early termination of Ca2+-induced Ca2+ release (CICR) from the sarcoplasmic reticulum (SR) in cardiac muscle remain poorly understood. Suggested mechanisms include cytosolic Ca2+-dependent inactivation/adaptation and luminal Ca2+-dependent deactivtion of the SR Ca2+ release channels/ryanodine receptors (RyRs). To explore the importance of cytosolic versus luminal Ca2+ regulatory mechanisms in controlling CICR, we assessed the impact of intra-SR Ca2+ buffering on global and local Ca2+ release properties of patch-clamped or permeabilized rat ventricular myocytes. Exogenous, low-affinity Ca2+ buffers (5 to 20 mmol/L ADA, citrate or maleate) were introduced into the SR by exposing the cells to “internal” solutions containing the buffers. Enhanced Ca2+ buffering in the SR was confirmed by an increase in the total SR Ca2+ content, as revealed by application of caffeine. At the whole-cell level, intra-SR [Ca2+] buffering dramatically increased the magnitude of Ca2+ transients induced by ICa and deranged the smoothly graded ICa-SR Ca2+ release relationship. The amplitude and time-to-peak of local Ca2+ release events, Ca2+ sparks, as well as the duration of local Ca2+ release fluxes underlying sparks were increased up to 2- to 3-fold. The exogenous Ca2+ buffers in the SR also reduced the frequency of repetitive activity observed at individual release sites in the presence of the RyR activator Imperatoxin A. We conclude that regulation of RyR openings by local intra-SR [Ca2+] is responsible for termination of CICR and for the subsequent restitution behavior of Ca2+ release sites in cardiac muscle.


Circulation | 2006

Clinical Phenotype and Functional Characterization of CASQ2 Mutations Associated With Catecholaminergic Polymorphic Ventricular Tachycardia

Marina Raffaele di Barletta; Serge Viatchenko-Karpinski; Alessandra Nori; Mirella Memmi; Dmitry Terentyev; Federica Turcato; Giorgia Valle; Nicoletta Rizzi; Carlo Napolitano; Sandor Gyorke; Pompeo Volpe; Silvia G. Priori

Background— Four distinct mutations in the human cardiac calsequestrin gene (CASQ2) have been linked to catecholaminergic polymorphic ventricular tachycardia (CPVT). The mechanisms leading to the clinical phenotype are still poorly understood because only 1 CASQ2 mutation has been characterized in vitro. Methods and Results— We identified a homozygous 16-bp deletion at position 339 to 354 leading to a frame shift and a stop codon after 5aa (CASQ2G112+5X) in a child with stress-induced ventricular tachycardia and cardiac arrest. The same deletion was also identified in association with a novel point mutation (CASQ2L167H) in a highly symptomatic CPVT child who is the first CPVT patient carrier of compound heterozygous CASQ2 mutations. We characterized in vitro the properties of CASQ2 mutants: CASQ2G112+5X did not bind Ca2+, whereas CASQ2L167H had normal calcium-binding properties. When expressed in rat myocytes, both mutants decreased the sarcoplasmic reticulum Ca2+-storing capacity and reduced the amplitude of ICa-induced Ca2+ transients and of spontaneous Ca2+ sparks in permeabilized myocytes. Exposure of myocytes to isoproterenol caused the development of delayed afterdepolarizations in CASQ2G112+5X. Conclusions— CASQ2L167H and CASQ2G112+5X alter CASQ2 function in cardiac myocytes, which leads to reduction of active sarcoplasmic reticulum Ca2+ release and calcium content. In addition, CASQ2G112+5X displays altered calcium-binding properties and leads to delayed afterdepolarizations. We conclude that the 2 CASQ2 mutations identified in CPVT create distinct abnormalities that lead to abnormal intracellular calcium regulation, thus facilitating the development of tachyarrhythmias.


Circulation Research | 2006

Abnormal Interactions of Calsequestrin With the Ryanodine Receptor Calcium Release Channel Complex Linked to Exercise-Induced Sudden Cardiac Death

Dmitry Terentyev; Alessandra Nori; Massimo Santoro; Serge Viatchenko-Karpinski; Zuzana Kubalova; Inna Györke; Radmila Terentyeva; Srikanth Vedamoorthyrao; Nico A. Blom; Giorgia Valle; Carlo Napolitano; Simon C. Williams; Pompeo Volpe; Silvia G. Priori; Sandor Gyorke

Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a familial arrhythmogenic disorder associated with mutations in the cardiac ryanodine receptor (RyR2) and cardiac calsequestrin (CASQ2) genes. Previous in vitro studies suggested that RyR2 and CASQ2 interact as parts of a multimolecular Ca2+-signaling complex; however, direct evidence for such interactions and their potential significance to myocardial function remain to be determined. We identified a novel CASQ2 mutation in a young female with a structurally normal heart and unexplained syncopal episodes. This mutation results in the nonconservative substitution of glutamine for arginine at amino acid 33 of CASQ2 (R33Q). Adenoviral-mediated expression of CASQ2R33Q in adult rat myocytes led to an increase in excitation–contraction coupling gain and to more frequent occurrences of spontaneous propagating (Ca2+ waves) and local Ca2+ signals (sparks) with respect to control cells expressing wild-type CASQ2 (CASQ2WT). As revealed by a Ca2+ indicator entrapped inside the sarcoplasmic reticulum (SR) of permeabilized myocytes, the increased occurrence of spontaneous Ca2+ sparks and waves was associated with a dramatic decrease in intra-SR [Ca2+]. Recombinant CASQ2WT and CASQ2R33Q exhibited similar Ca2+-binding capacities in vitro; however, the mutant protein lacked the ability of its WT counterpart to inhibit RyR2 activity at low luminal [Ca2+] in planar lipid bilayers. We conclude that the R33Q mutation disrupts interactions of CASQ2 with the RyR2 channel complex and impairs regulation of RyR2 by luminal Ca2+. These results show that intracellular Ca2+ cycling in normal heart relies on an intricate interplay of CASQ2 with the proteins of the RyR2 channel complex and that disruption of these interactions can lead to cardiac arrhythmia.


Circulation Research | 2004

Abnormal Calcium Signaling and Sudden Cardiac Death Associated With Mutation of Calsequestrin

Serge Viatchenko-Karpinski; Dmitry Terentyev; Inna Györke; Radmila Terentyeva; Pompeo Volpe; Silvia G. Priori; Carlo Napolitano; Alessandra Nori; Simon C. Williams; Sandor Gyorke

Abstract— Mutations in human cardiac calsequestrin (CASQ2), a high-capacity calcium-binding protein located in the sarcoplasmic reticulum (SR), have recently been linked to effort-induced ventricular arrhythmia and sudden death (catecholaminergic polymorphic ventricular tachycardia). However, the precise mechanisms through which these mutations affect SR function and lead to arrhythmia are presently unknown. In this study, we explored the effect of adenoviral-directed expression of a canine CASQ2 protein carrying the catecholaminergic polymorphic ventricular tachycardia–linked mutation D307H (CASQ2D307H) on Ca2+ signaling in adult rat myocytes. Total CASQ2 protein levels were consistently elevated ≈4-fold in cells infected with adenoviruses expressing either wild-type CASQ2 (CASQ2WT) or CASQ2D307H. Expression of CASQ2D307H reduced the Ca2+ storing capacity of the SR. In addition, the amplitude, duration, and rise time of macroscopic ICa-induced Ca2+ transients and of spontaneous Ca2+ sparks were reduced significantly in myocytes expressing CASQ2D307H. Myocytes expressing CASQ2D307H also displayed drastic disturbances of rhythmic oscillations in [Ca2+]i and membrane potential, with signs of delayed afterdepolarizations when undergoing periodic pacing and exposed to isoproterenol. Importantly, normal rhythmic activity was restored by loading the SR with the low-affinity Ca2+ buffer, citrate. Our data suggest that the arrhythmogenic CASQ2D307H mutation impairs SR Ca2+ storing and release functions and destabilizes the Ca2+-induced Ca2+ release mechanism by reducing the effective Ca2+ buffering inside the SR and/or by altering the responsiveness of the Ca2+ release channel complex to luminal Ca2+. These results establish at the cellular level the pathological link between CASQ2 mutations and the predisposition to adrenergically mediated arrhythmias observed in patients carrying CASQ2 defects.


Cellular Microbiology | 2006

Pseudomonas aeruginosa autoinducer modulates host cell responses through calcium signalling

E. K. Shiner; Dmitry Terentyev; A. Bryan; S. Sennoune; R. Martinez-Zaguilan; Guigen Li; Sandor Gyorke; Simon C. Williams; Kendra P. Rumbaugh

The opportunistic pathogen Pseudomonas aeruginosa utilizes a cell density‐dependent signalling phenomenon known as quorum sensing (QS) to regulate several virulence factors needed for infection. Acylated homoserine lactones, or autoinducers, are the primary signal molecules that mediate QS in P. aeruginosa. The autoinducer N‐3O‐dodecanoyl‐homoserine lactone (3O‐C12) exerts effects on mammalian cells, including upregulation of pro‐inflammatory mediators and induction of apoptosis. However, the mechanism(s) by which 3O‐C12 affects mammalian cell responses is unknown. Here we report that 3O‐C12 induces apoptosis and modulates the expression of immune mediators in murine fibroblasts and human vascular endothelial cells (HUVEC). The effects of 3O‐C12 were accompanied by increases in cytosolic calcium levels that were mobilized from intracellular stores in the endoplasmic reticulum (ER). Calcium release was blocked by an inhibitor of phospholipase C, suggesting that release occurred through inositol triphosphate (IP3) receptors in the ER. Apoptosis, but not immunodulatory gene activation, was blocked when 3O‐C12‐exposed cells were co‐incubated with inhibitors of calcium signalling. This study indicates that 3O‐C12 can activate at least two independent signal transduction pathways in mammalian cells, one that involves increases in intracellular calcium levels and leads to apoptosis, and a second pathway that results in modulation of the inflammatory response.


Cardiovascular Research | 2009

Redox modification of ryanodine receptors underlies calcium alternans in a canine model of sudden cardiac death

Andriy E. Belevych; Dmitry Terentyev; Serge Viatchenko-Karpinski; Radmila Terentyeva; Arun Sridhar; Yoshinori Nishijima; Lance D. Wilson; Arturo J. Cardounel; Kenneth R. Laurita; Cynthia A. Carnes; George E. Billman; Sandor Gyorke

AIMS Although cardiac alternans is a known predictor of lethal arrhythmias, its underlying causes remain largely undefined in disease settings. The potential role of, and mechanisms responsible for, beat-to-beat alternations in the amplitude of systolic Ca(2+) transients (Ca(2+) alternans) was investigated in a canine post-myocardial infarction (MI) model of sudden cardiac death (SCD). METHODS AND RESULTS Post-MI dogs had preserved left ventricular (LV) function and susceptibility to ventricular fibrillation (VF) during exercise. LV wedge preparations from VF dogs were more susceptible to action potential (AP) alternans and the frequency-dependence of Ca(2+) alternans was shifted towards slower rates in myocytes isolated from VF dogs relative to controls. In both groups of cells, cytosolic Ca(2+) transients ([Ca(2+)](c)) alternated in phase with changes in diastolic Ca(2+) in sarcoplasmic reticulum ([Ca(2+)](SR)), but the dependence of [Ca(2+)](c) amplitude on [Ca(2+)](SR) was steeper in VF cells. Abnormal ryanodine receptor (RyR) function in VF cells was indicated by increased fractional Ca(2+) release for a given amplitude of Ca(2+) current and elevated diastolic RyR-mediated SR Ca(2+) leak. SR Ca(2+) uptake activity did not differ between VF and control cells. VF myocytes had an increased rate of reactive oxygen species production and increased RyR oxidation. Treatment of VF myocytes with reducing agents normalized parameters of Ca(2+) handling and shifted the threshold of Ca(2+) alternans to higher frequencies. CONCLUSION Redox modulation of RyRs promotes generation of Ca(2+) alternans by enhancing the steepness of the Ca(2+) release-load relationship and thereby providing a substrate for post-MI arrhythmias.


PLOS ONE | 2011

MicroRNA-1 and -133 increase arrhythmogenesis in heart failure by dissociating phosphatase activity from RyR2 complex.

Andriy E. Belevych; Sarah E. Sansom; Radmila Terentyeva; Hsiang-Ting Ho; Yoshinori Nishijima; Mickey M. Martin; Hitesh K. Jindal; Jennifer A. Rochira; Yukiko Kunitomo; Maha Abdellatif; Cynthia A. Carnes; Terry S. Elton; Sandor Gyorke; Dmitry Terentyev

In heart failure (HF), arrhythmogenic spontaneous sarcoplasmic reticulum (SR) Ca2+ release and afterdepolarizations in cardiac myocytes have been linked to abnormally high activity of ryanodine receptors (RyR2s) associated with enhanced phosphorylation of the channel. However, the specific molecular mechanisms underlying RyR2 hyperphosphorylation in HF remain poorly understood. The objective of the current study was to test the hypothesis that the enhanced expression of muscle-specific microRNAs (miRNAs) underlies the HF-related alterations in RyR2 phosphorylation in ventricular myocytes by targeting phosphatase activity localized to the RyR2. We studied hearts isolated from canines with chronic HF exhibiting increased left ventricular (LV) dimensions and decreased LV contractility. qRT-PCR revealed that the levels of miR-1 and miR-133, the most abundant muscle-specific miRNAs, were significantly increased in HF myocytes compared with controls (2- and 1.6-fold, respectively). Western blot analyses demonstrated that expression levels of the protein phosphatase 2A (PP2A) catalytic and regulatory subunits, which are putative targets of miR-133 and miR-1, were decreased in HF cells. PP2A catalytic subunit mRNAs were validated as targets of miR-133 by using luciferase reporter assays. Pharmacological inhibition of phosphatase activity increased the frequency of diastolic Ca2+ waves and afterdepolarizations in control myocytes. The decreased PP2A activity observed in HF was accompanied by enhanced Ca2+/calmodulin-dependent protein kinase (CaMKII)-mediated phosphorylation of RyR2 at sites Ser-2814 and Ser-2030 and increased frequency of diastolic Ca2+ waves and afterdepolarizations in HF myocytes compared with controls. In HF myocytes, CaMKII inhibitory peptide normalized the frequency of pro-arrhythmic spontaneous diastolic Ca2+ waves. These findings suggest that altered levels of major muscle-specific miRNAs contribute to abnormal RyR2 function in HF by depressing phosphatase activity localized to the channel, which in turn, leads to the excessive phosphorylation of RyR2s, abnormal Ca2+ cycling, and increased propensity to arrhythmogenesis.

Collaboration


Dive into the Dmitry Terentyev's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Inna Györke

Texas Tech University Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge