Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karim Roder is active.

Publication


Featured researches published by Karim Roder.


Genome Medicine | 2010

Integration of microRNA changes in vivo identifies novel molecular features of muscle insulin resistance in type 2 diabetes

Iain J. Gallagher; Camilla Scheele; Pernille Keller; Anders Rinnov Nielsen; Judit Remenyi; Christian P. Fischer; Karim Roder; John A. Babraj; Claes Wahlestedt; Gyorgy Hutvagner; Bente Klarlund Pedersen; James A. Timmons

BackgroundSkeletal muscle insulin resistance (IR) is considered a critical component of type II diabetes, yet to date IR has evaded characterization at the global gene expression level in humans. MicroRNAs (miRNAs) are considered fine-scale rheostats of protein-coding gene product abundance. The relative importance and mode of action of miRNAs in human complex diseases remains to be fully elucidated. We produce a global map of coding and non-coding RNAs in human muscle IR with the aim of identifying novel disease biomarkers.MethodsWe profiled >47,000 mRNA sequences and >500 human miRNAs using gene-chips and 118 subjects (n = 71 patients versus n = 47 controls). A tissue-specific gene-ranking system was developed to stratify thousands of miRNA target-genes, removing false positives, yielding a weighted inhibitor score, which integrated the net impact of both up- and down-regulated miRNAs. Both informatic and protein detection validation was used to verify the predictions of in vivo changes.ResultsThe muscle mRNA transcriptome is invariant with respect to insulin or glucose homeostasis. In contrast, a third of miRNAs detected in muscle were altered in disease (n = 62), many changing prior to the onset of clinical diabetes. The novel ranking metric identified six canonical pathways with proven links to metabolic disease while the control data demonstrated no enrichment. The Benjamini-Hochberg adjusted Gene Ontology profile of the highest ranked targets was metabolic (P < 7.4 × 10-8), post-translational modification (P < 9.7 × 10-5) and developmental (P < 1.3 × 10-6) processes. Protein profiling of six development-related genes validated the predictions. Brain-derived neurotrophic factor protein was detectable only in muscle satellite cells and was increased in diabetes patients compared with controls, consistent with the observation that global miRNA changes were opposite from those found during myogenic differentiation.ConclusionsWe provide evidence that IR in humans may be related to coordinated changes in multiple microRNAs, which act to target relevant signaling pathways. It would appear that miRNAs can produce marked changes in target protein abundance in vivo by working in a combinatorial manner. Thus, miRNA detection represents a new molecular biomarker strategy for insulin resistance, where micrograms of patient material is needed to monitor efficacy during drug or life-style interventions.


Gene | 1999

Interaction between the two ubiquitously expressed transcription factors NF-Y and Sp1.

Karim Roder; Siegmund S. Wolf; Kenneth Larkin; Michael Schweizer

The regulation of the rat fatty acid synthase gene by mediators such as diet, hormones, cAMP, sterols or retinoic acid is controlled by three NF-Y binding sites. All three sites have a neighbouring Sp1-binding GC-box. This NF-Y/Sp1 motif is conserved in the FAS promoters of rat, human, goose and chicken. We have previously shown cooperative binding of NF-Y and Sp1 to the promoter region at -500 coincident with a diet-induced DNAse I-hypersensitive site. Here, we show an in-vivo interaction of NF-YA with Sp1 using the yeast two-hybrid system. The interacting domains are located between amino acids 55 and 139 of the NF-Y subunit NF-YA and between amino acids 139 and 344 of Sp1. In addition, we show by co-immunoprecipitation direct interaction of NF-Y subunit NF-YA with Sp1 in extracts of rat hepatoma cells H4IIE. Furthermore, we demonstrate by the GST pull-down assay that NF-YA interacts physically with Sp1 in-vitro in the absence of DNA. Therefore, NF-Y can be added to the list of transcription factors interacting with Sp1.


Journal of Biological Chemistry | 1997

Cooperative Binding of NF-Y and Sp1 at the DNase I-hypersensitive Site, Fatty Acid Synthase Insulin-responsive Element 1, Located at −500 in the Rat Fatty Acid Synthase Promoter

Karim Roder; Siegmund S. Wolf; Karl-Friedrich Beck; Michael Schweizer

In vitro DNase I footprint analysis of the rat fatty acid synthase (FAS) promoter from −568 to −468 revealed four protein binding sites: A, B, and C boxes and the FAS insulin-responsive element 1 (FIRE1). As demonstrated by gel mobility shift analysis and supershift experiments, FIRE1, located between −516 and −498, is responsible for binding NF-Y. The C box located downstream of FIRE1 was shown by in vitro footprinting to be a Sp1 binding site, and furthermore, competition with Sp1 also abolished FIRE1 binding. Since the half-life of the Sp1·NF-Y·DNA complex is significantly longer than the half-lives of the Sp1·DNA or NF-Y·DNA complexes, the two transcription factors are deemed to bind cooperatively in the FAS promoter at −500. It is unusual that NF-Y binds at this distance from the start site of transcription. NF-Y binding sites are found in the promoters of at least three other FAS genes, viz. goose, chicken, and man. A second NF-Y binding site is located in the FAS promoter at the more usual position of −103 to −87, and it too has a neighboring Sp1 site. CTF/NF-1 competes for proteins binding to the B box. The A box binds Sp1 and contains a 12/13 match of the inverted repeat sequence responsible for binding the nuclear factor EF-C/RFX-1 in the enhancer regions of hepatitis B virus and the major histocompatibility complex class II antigen promoter. The same relative positions of NF-Y and Sp1 binding sites in the promoters of FAS genes of goose, rat, chicken, and man emphasize the involvement of these transcription factors in the diet and hormonal regulation of FAS.


Molecular and Cellular Biology | 2000

Transcriptional Repression by Drosophila Methyl-CpG-Binding Proteins

Karim Roder; Ming-Shiu Hung; Tai-Lin Lee; Tzu-Yang Lin; H. Xiao; Ken-Ichi Isobe; Jyh-Lyh Juang; C. K.James Shen

ABSTRACT C methylation at genomic CpG dinucleotides has been implicated in the regulation of a number of genetic activities during vertebrate cell differentiation and embryo development. The methylated CpG could induce chromatin condensation through the recruitment of histone deacetylase (HDAC)-containing complexes by methyl-CpG-binding proteins. These proteins consist of the methylated-DNA binding domain (MBD). Unexpectedly, however, several studies have identified MBD-containing proteins encoded by genes of Drosophila melanogaster, an invertebrate species supposed to be void of detectable m5CpG. We now report the genomic structure of aDrosophila gene, dMBD2/3, that codes for two MBD-containing, alternatively spliced, and developmentally regulated isoforms of proteins, dMBD2/3 and dMBD2/3Δ. Interestingly, in vitro binding experiments showed that as was the case for vertebrate MBD proteins, dMBD2/3Δ could preferentially recognize m5CpG-containing DNA through its MBD. Furthermore, dMBD2/3Δ as well as one of its orthologs in mouse, MBD2b, could function in human cells as a transcriptional corepressor or repressor. The activities of HDACs appeared to be dispensable for transcriptional repression by dMBD2/3Δ. Finally, dMBD2/3Δ also could repress transcription effectively in transfectedDrosophila cells. The surprisingly similar structures and characteristics of the MBD proteins as well as DNA cytosine (C-5) methyltransferase-related proteins in Drosophila and vertebrates suggest interesting scenarios for their roles in eukaryotic cellular functions.


Gene | 1997

NF-Y binds to the inverted CCAAT box, an essential element for cAMP-dependent regulation of the rat fatty acid synthase (FAS) gene

Karim Roder; Siegmund S. Wolf; Karl-Friedrich Beck; Stefan Sickinger; Michael Schweizer

Using EMSA competition experiments together with supershifts and in vitro transcription/translation we show that the basal transcription factor NF-Y or a related factor binds to the cAMP-responsive inverted CCAAT box recently identified in the rat fatty acid synthase (FAS) gene from nucleotide -99 to -92 relative to the transcription start site of the FAS mRNA. This result indicates a putative novel role for NF-Y in the cAMP-dependent gene regulation in a small class of genes such as FAS and tryptophan hydroxylase. Since NF-Y is a constitutively produced factor, not surprisingly, no differences in the specific DNA/protein complex with the CCAAT(FAS) box and nuclear proteins from H4IIE cells treated with cAMP and/or insulin or not could be observed. This implies that NF-Y might be modified in response to cAMP or might interact with another factor whose properties are altered by cAMP.


FEBS Letters | 2007

SREBP-1c mediates the retinoid-dependent increase in fatty acid synthase promoter activity in HepG2.

Karim Roder; Lei Zhang; Michael Schweizer

Treatment of HepG2 with all‐trans retinoic acid (RA) induces expression of fatty acid synthase (FAS) mRNA and protein. Transfections show that the FAS promoter positively responds to retinoid X receptor (RXR) but not to RA receptor (RAR) agonists. Since RXR alone is capable of mediating the RA response of FAS, the existence of a classical RA‐responsive element in the FAS promoter may be ruled out. Binding sites for NF‐Y and SREBP‐1 proved to be essential for the RA response. Exposure to all‐trans RA increased mRNA and protein levels of SREBP‐1, a transcriptional activator for FAS. Overexpression of a dominant‐negative form of SREBP‐1c diminished the RA‐dependent increase in promoter activity. These data demonstrate that RXR ligands can stimulate the expression of a lipogenic gene solely by inducing transcription and cleavage of membrane‐bound SREBP‐1c.


American Journal of Physiology-heart and Circulatory Physiology | 2014

Sarcoplasmic reticulum Ca2+ release is both necessary and sufficient for SK channel activation in ventricular myocytes

Dmitry Terentyev; Jennifer A. Rochira; Radmila Terentyeva; Karim Roder; Gideon Koren; Weiyan Li

SK channels are upregulated in human patients and animal models of heart failure (HF). However, their activation mechanism and function in ventricular myocytes remain poorly understood. We aim to test the hypotheses that activation of SK channels in ventricular myocytes requires Ca(2+) release from sarcoplasmic reticulum (SR) and that SK currents contribute to reducing triggered activity. SK2 channels were overexpressed in adult rat ventricular myocytes using adenovirus gene transfer. Simultaneous patch clamp and confocal Ca(2+) imaging experiments in SK2-overexpressing cells demonstrated that depolarizations resulted in Ca(2+)-dependent outward currents sensitive to SK inhibitor apamin. SR Ca(2+) release induced by rapid application of 10 mM caffeine evoked repolarizing SK currents, whereas complete depletion of SR Ca(2+) content eliminated SK currents in response to depolarizations, despite intact Ca(2+) influx through L-type Ca(2+) channels. Furthermore, voltage-clamp experiments showed that SK channels can be activated by global spontaneous SR Ca(2+) release events Ca(2+) waves (SCWs). Current-clamp experiments revealed that SK overexpression reduces the amplitude of delayed afterdepolarizations (DADs) resulting from SCWs and shortens action potential duration. Immunolocalization studies showed that overexpressed SK channels are distributed both at external sarcolemmal membranes and along the Z-lines, resembling the distribution of endogenous SK channels. In summary, SR Ca(2+) release is both necessary and sufficient for the activation of SK channels in rat ventricular myocytes. SK currents contribute to repolarization during action potentials and attenuate DADs driven by SCWs. Thus SK upregulation in HF may have an anti-arrhythmic effect by reducing triggered activity.


American Journal of Physiology-heart and Circulatory Physiology | 2010

Pore mutants of HERG and KvLQT1 downregulate the reciprocal currents in stable cell lines

Xiao Qin Ren; Gong Xin Liu; Louise E. Organ-Darling; Renjian Zheng; Karim Roder; Hitesh K. Jindal; Jason Centracchio; Thomas V. McDonald; Gideon Koren

We previously reported a transgenic rabbit model of long QT syndrome based on overexpression of pore mutants of repolarizing K(+) channels KvLQT1 (LQT1) and HERG (LQT2).The transgenes in these rabbits eliminated the slow and fast components of the delayed rectifier K(+) current (I(Ks) and I(Kr), respectively), as expected. Interestingly, the expressed pore mutants of HERG and KvLQT1 downregulated the remaining reciprocal repolarizing currents, I(Ks) and I(Kr), without affecting the steady-state levels of the native polypeptides. Here, we sought to further explore the functional interactions between HERG and KvLQT1 in heterologous expression systems. Stable Chinese hamster ovary (CHO) cell lines expressing KvLQT1-minK or HERG were transiently transfected with expression vectors coding for mutant or wild-type HERG or KvLQT1. Transiently expressed pore mutant or wild-type KvLQT1 downregulated I(Kr) in HERG stable CHO cell lines by 70% and 44%, respectively. Immunostaining revealed a severalfold lower surface expression of HERG, which could account for the reduction in I(Kr) upon KvLQT1 expression. Deletion of the KvLQT1 NH(2)-terminus did not abolish the downregulation, suggesting that the interactions between the two channels are mediated through their COOH-termini. Similarly, transiently expressed HERG reduced I(Ks) in KvLQT1-minK stable cells. Coimmunoprecipitations indicated a direct interaction between HERG and KvLQT1, and surface plasmon resonance analysis demonstrated a specific, physical association between the COOH-termini of KvLQT1 and HERG. Here, we present an in vitro model system consistent with the in vivo reciprocal downregulation of repolarizing currents seen in transgenic rabbit models, illustrating the importance of the transfection method when studying heterologous ion channel expression and trafficking. Moreover, our data suggest that interactions between KvLQT1 and HERG are mediated through COOH-termini.


Molecular Biotechnology | 1995

Determination of the molecular weight of DNA-binding proteins using UV-crosslinking and SDS-PAGE.

Siegmund S. Wolf; Karim Roder; Michael Schweizer

We describe the use of UV-crosslinking in combination with SDS-PAGE to determine the approximate molecular weight of DNA-binding proteins. A 5-bromo-2′-deoxyuridine (5-BrdU)-substituted, radioactively labeled double-stranded oligonucleotide representing the protein binding site is incubated with a crude nuclear extract containing the protein of interest. Following irradiation with a UV light source, the DNA/protein complex is subjected to SDS-PAGE and its molecular weight determined by comparison with appropriate protein standards.


Molecular and Cellular Biology | 2000

Loading of DNA-Binding Factors to an Erythroid Enhancer

S.-C. Wen; Karim Roder; K.-Y. Hu; I. Rombel; N. R. Gavva; P. Daftari; Yuan-Yeh Kuo; Wang Ch; C.-K. J. Shen

ABSTRACT The HS-40 enhancer is the major cis-acting regulatory element responsible for the developmental stage- and erythroid lineage-specific expression of the human α-like globin genes, the embryonic ζ and the adult α2/α/1. A model has been proposed in which competitive factor binding at one of the HS-40 motifs, 3′-NA, modulates the capability of HS-40 to activate the embryonic ζ-globin promoter. Furthermore, this modulation was thought to be mediated through configurational changes of the HS-40 enhanceosome during development. In this study, we have further investigated the molecular basis of this model. First, human erythroid K562 cells stably integrated with various HS-40 mutants cis linked to a human α-globin promoter-growth hormone hybrid gene were analyzed by genomic footprinting and expression analysis. By the assay, we demonstrate that factors bound at different motifs of HS-40 indeed act in concert to build a fully functional enhanceosome. Thus, modification of factor binding at a single motif could drastically change the configuration and function of the HS-40 enhanceosome. Second, a specific 1-bp, GC→TA mutation in the 3′-NA motif of HS-40, 3′-NA(II), has been shown previously to cause significant derepression of the embryonic ζ-globin promoter activity in erythroid cells. This derepression was hypothesized to be regulated through competitive binding of different nuclear factors, in particular AP1 and NF-E2, to the 3′-NA motif. By gel mobility shift and transient cotransfection assays, we now show that 3′-NA(II) mutation completely abolishes the binding of small MafK homodimer. Surprisingly, NF-E2 as well as AP1 can still bind to the 3′-NA(II) sequence. The association constants of both NF-E2 and AP1 are similar to their interactions with the wild-type 3′-NA motif. However, the 3′-NA(II) mutation causes an approximately twofold reduction of the binding affinity of NF-E2 factor to the 3′-NA motif. This reduction of affinity could be accounted for by a twofold-higher rate of dissociation of the NF-E2–3′-NA(II) complex. Finally, we show by chromatin immunoprecipitation experiments that only binding of NF-E2, not AP1, could be detected in vivo in K562 cells around the HS-40 region. These data exclude a role for AP1 in the developmental regulation of the human α-globin locus via the 3′-NA motif of HS-40 in embryonic/fetal erythroid cells. Furthermore, extrapolation of the in vitro binding studies suggests that factors other than NF-E2, such as the small Maf homodimers, are likely involved in the regulation of the HS-40 function in vivo.

Collaboration


Dive into the Karim Roder's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hei Sook Sul

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge