Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dmytro S. Nesterov is active.

Publication


Featured researches published by Dmytro S. Nesterov.


Inorganic Chemistry | 2012

Heterometallic CoIII4FeIII2 Schiff Base Complex: Structure, Electron Paramagnetic Resonance, and Alkane Oxidation Catalytic Activity

Dmytro S. Nesterov; Eduard N. Chygorin; Volodymyr N. Kokozay; Volodymyr Bon; Roman Boča; Yuriy N. Kozlov; Lidia S. Shul’pina; Julia Jezierska; Andrew Ozarowski; Armando J. L. Pombeiro; Georgiy B. Shul’pin

The heterometallic complex [Co(4)Fe(2)OSae(8)]·4DMF·H(2)O (1) was synthesized by one-pot reaction of cobalt powder with iron chloride in a dimethylformamide solution of salicylidene-2-ethanolamine (H(2)Sae) and characterized by single crystal X-ray diffraction analysis, magnetic measurements, high frequency electron paramagnetic resonance (HF-EPR), and Mössbauer spectroscopies. The exchange coupling in the Fe(III)-Fe(III) pair is of antiferromagnetic behavior with J/hc = -190 cm(-1). The HF-EPR spectra reveal an unusual pattern with a hardly detectable triplet signal of the Fe(III) dimer. The magnitude of D (ca. 13.9 cm(-1)) was found to be much larger than in related dimers. The catalytic investigations disclosed an outstanding activity of 1 toward oxidation of cycloalkanes with hydrogen peroxide, under mild conditions. The most efficient system showed a turnover number (TON) of 3.57 × 10(3) with the concomitant overall yield of 26% for cyclohexane, and 2.28 × 10(3)/46%, respectively, for cyclooctane. A remarkable turnover frequency (TOF) of 1.12 × 10(4) h(-1) (the highest initial rate W(0) = 3.5 × 10(-4) M s(-1)) was achieved in oxidation of cyclohexane. Kinetic experiments and selectivity parameters led to the conclusion that hydroxyl radicals are active (attacking C-H bonds) species. Kinetic and electrospray ionization mass spectrometry (ESI-MS) data allowed us to assume that the trinuclear heterometallic particle [Co(2)Fe(Sae)(4)](+), originated from 1 in solution, could be responsible for efficient generation of hydroxyl radicals from hydrogen peroxide.


Inorganic Chemistry | 2011

Heterometallic Cu/Co and Cu/Co/Zn complexes bearing rare asymmetric tetranuclear cores: synthesis, structures, and magnetic and catalytic properties toward the peroxidative oxidation of cycloalkanes.

Dmytro S. Nesterov; Volodymyr N. Kokozay; Julia Jezierska; Oleksiy V. Pavlyuk; Roman Boča; Armando J. L. Pombeiro

The three novel heterometallic complexes [CuCo(III)Co(II)(2)(MeDea)(3)Cl(3)(CH(3)OH)(0.55)(H(2)O)(0.45)](H(2)O)(0.45) (1), [CuCo(III)Zn(2)(MeDea)(3)Cl(3)(CH(3)OH)(0.74)(H(2)O)(0.26)](H(2)O)(0.26) (2), and [CuCo(III)Zn(2)(MeDea)(3)Cl(3)(DMF)] (3) have been prepared using a one-pot reaction of copper powder with cobalt chloride (1) and zinc nitrate (2, 3) in a methanol (1, 2) or dimethylformamide (3) solution of N-methyldiethanolamine. A search of the Cambridge Structural Database shows that the tetranuclear asymmetric cores M(4)(μ(3)-X)(μ-X)(5) of 1-3 represent an extremely rare case of M(4)X(6) arrays. The magnetic investigations of 1 disclose antiferromagnetic coupling in a Co(II)-Cu(II)-Co(II) exchange fragment with J(Co-Cu)/hc = -4.76 cm(-1), J(Co-Co)/hc = -2.76 cm(-1), and D(Co)/hc = +34.3 cm(-1). Compounds 1-3 act as precursors for the mild peroxidative oxidation of cyclohexane to cyclohexanol and cyclohexanone with overall yields up to 23%. The synthetic and structural features as well as the thermogravimetric behavior and electrospray ionization mass spectrometry data are discussed.


Inorganic Chemistry | 2010

Bringing an Old Biological Buffer to Coordination Chemistry: New 1D and 3D Coordination Polymers with [Cu4(HbeS)4] Cores for Mild Hydrocarboxylation of Alkanes

Alexander M. Kirillov; Coelho Ja; Marina V. Kirillova; da Silva Mf; Dmytro S. Nesterov; Katrin R. Gruenwald; Matti Haukka; Armando J. L. Pombeiro

New water-soluble 1D and 3D Cu(II)/Na coordination polymers 1-3 bearing unprecedented [Cu(4)(Hbes)(4)] cores have been easily generated by aqueous-medium self-assembly and fully characterized, thus opening up the use of the common biological buffer H(3)bes, (HO(3)SCH(2)CH(2))N(CH(2)CH(2)OH)(2), in synthetic coordination chemistry. Apart from representing the first isolated and structurally characterized coordination compounds derived from H(3)bes, 1-3 show a remarkable promoting effect in the mild aqueous-medium hydrocarboxylation, by CO and H(2)O, of gaseous alkanes (C(3)H(8) and n-C(4)H(10)) to the corresponding carboxylic acids, which are obtained in up to 95% yields based on the alkane.


New Journal of Chemistry | 2015

Alkane oxidation with peroxides catalyzed by cage-like copper( ii ) silsesquioxanes

Mikhail M. Vinogradov; Yuriy N. Kozlov; Alexey N. Bilyachenko; Dmytro S. Nesterov; Lidia S. Shul'pina; Yan V. Zubavichus; Armando J. L. Pombeiro; Mikhail M. Levitsky; Alexey I. Yalymov; Georgiy B. Shul'pin

Isomeric cage-like tetracopper(II) silsesquioxane complexes [(PhSiO1.5)12(CuO)4(NaO0.5)4] (1a), [(PhSiO1.5)6(CuO)4(NaO0.5)4(PhSiO1.5)6] (1b) and binuclear complex [(PhSiO1.5)10(CuO)2(NaO0.5)2] (2) have been studied by various methods. These compounds can be considered as models of some multinuclear copper-containing enzymes. Compounds 1a and 2 are good pre-catalysts for the alkane oxygenation with hydrogen peroxide in air in an acetonitrile solution. Thus, the 1a-catalyzed reaction with cyclohexane at 60 °C gave mainly cyclohexyl hydroperoxide in 17% yield (turnover number, TON, was 190 after 230 min and initial turnover frequency, TOF, was 100 h−1). The alkyl hydroperoxide partly decomposes in the course of the reaction to afford the corresponding ketone and alcohol. The effective activation energy for the cyclohexane oxygenation catalyzed by compounds 1a and 2 is 16 ± 2 and 17 ± 2 kcal mol−1, respectively. Selectivity parameters measured in the oxidation of linear and branched alkanes and the kinetic analysis revealed that the oxidizing species in the reaction is the hydroxyl radical. The analysis of the dependence of the initial reaction rate on the initial concentration of cyclohexane led to a conclusion that hydroxyl radicals attack the cyclohexane molecules in proximity to the copper reaction centers. The oxidations of saturated hydrocarbons with tert-butylhydroperoxide (TBHP) catalyzed by complexes 1a and 2 exhibit unusual selectivity parameters which are due to the steric hindrance created by bulky silsesquioxane ligands surrounding copper reactive centers. Thus, the methylene groups in n-octane have different reactivities: the regioselectivity parameter for the oxidation with TBHP catalyzed by 1a is 1 : 10.5 : 8 : 7. Furthermore, in the oxidation of methylcyclohexane the position 2 relative to the methyl group of this substrate is noticeably less reactive than the corresponding positions 3 and 4. Finally, the oxidation of trans-1,2-dimethylcyclohexane with TBHP catalyzed by complexes 1a and 2 proceeds stereoselectively with the inversion of configuration. The 1a-catalyzed reaction of cyclohexane with H216O2 in an atmosphere of 18O2 gives cyclohexyl hydroperoxide containing up to 50% of 18O. The small amount of cyclohexanone, produced along with cyclohexyl hydroperoxide, is 18O-free and is generated apparently via a mechanism which does not include hydroxyl radicals and incorporation of molecular oxygen from the atmosphere.


RSC Advances | 2016

A Heterometallic (Fe6Na8) Cage-like Silsesquioxane: Synthesis, Structure, Spin Glass Behavior and High Catalytic Activity

Alexey N. Bilyachenko; Mikhail M. Levitsky; Alexey I. Yalymov; Alexander A. Korlyukov; Anna V. Vologzhanina; Yuriy N. Kozlov; Lidia S. Shul'pina; Dmytro S. Nesterov; Armando J. L. Pombeiro; Frédéric Lamaty; Xavier Bantreil; Amandine Fetre; Diyang Liu; Jean Martinez; Jérôme Long; Joulia Larionova; Yannick Guari; A. L. Trigub; Yan V. Zubavichus; Igor E. Golub; O. A. Filippov; Elena S. Shubina; Georgiy B. Shul'pin

The exotic “Asian Lantern” heterometallic cage silsesquioxane [(PhSiO1.5)20(FeO1.5)6(NaO0.5)8(n-BuOH)9.6(C7H8)] (I) was obtained and characterized by X-ray diffraction, EXAFS, topological analyses and DFT calculation. The magnetic property investigations revealed that it shows an unusual spin glass-like behavior induced by a particular triangular arrangement of Fe(III) ions. Cyclohexane and other alkanes as well as benzene can be oxidized to the corresponding alkyl hydroperoxides and phenol, respectively, by hydrogen peroxide in air in the presence of catalytic amounts of complex I and nitric acid. The I-catalyzed reaction of cyclohexane, c-C6H12, with H216O2 in an atmosphere of 18O2 gave a mixture of labeled and non-labeled cyclohexyl hydroperoxides, c-C6H11–16O–16OH and c-C6H11–18O–18OH, respectively, with an 18O incorporation level of ca. 12%. Compound I also revealed high efficiency in the oxidative amidation of alcohols into amides: in the presence of complex I, only 500 ppm of iron was allowed to reach TON and TOF values of 1660 and 92 h−1.


Dalton Transactions | 2007

Self-assembly of the unique heterotrimetallic Cu/Co/M complexes possessing triangular antiferromagnetic {Cu2CoPb}2 and linear ferromagnetic {Cu2CoCd2} cores

Dmytro S. Nesterov; Volodymyr N. Kokozay; Brian W. Skelton; Julia Jezierska; Andrew Ozarowski

Two novel heterotrimetallic octa-[Cu2CoPbCl4(L)4]2 (1) and pentanuclear [Cu2CoCd2Cl6(L)4(HOMe)2] (2) complexes have been prepared in one-pot reactions of zerovalent copper with metal chlorides in a methanol (for 1) or acetonitrile (for 2) solution of 2-(dimethylamino)ethanol (HL) in open air. The crystal structures of both compounds consist of discrete centrosymmetric heterotrimetallic molecules revealing triangular (1) and unique consecutive (2) arrangements of magnetic CuII(2)CoII cores. The complex 1 can be viewed as a dimer made up of tetranuclear Cu2CoPbCl4(L)4 units linked through the two micro(2)-Cl atoms. The molecular structure of 2 is a pentanuclear assembly containing the previously unknown Cu(micro-O)(2)Co(micro-O)(2)Cu core. The magnetic studies of 1 revealed an antiferromagnetic coupling (J(CoCu) = 37 cm(-1) and J(CuCu) = 87 cm(-1)) while 2 exhibits a weak ferromagnetic behavior (J(CoCu) = -3.2 cm(-1) and J(CuCu) = -14.2 cm(-1)). The correlations between magnetic behaviour and structures as well as synthetic features are also discussed.


Catalysis Science & Technology | 2014

Oxidation of hydrocarbons with H2O2/O2 catalyzed by osmium complexes containing p-cymene ligands in acetonitrile

Mikhail M. Vinogradov; Yuriy N. Kozlov; Dmytro S. Nesterov; Lidia S. Shul'pina; Armando J. L. Pombeiro; Georgiy B. Shul'pin

The soluble osmium complexes containing p-cymene (π-p-cym) ligands, [(η6-p-cym)OsCl2]2 (1), [(η6-p-cym)Os(bipy)Cl]PF6 (2), and [(η6-p-cym)2Os2(μ-H)3]PF6 (3), are efficient catalysts for the oxidation of alkanes (cyclohexane, n-heptane, methylcyclohexane, isooctane, and cis- and trans-1,2-dimethylcyclohexane) with hydrogen peroxide in air to the corresponding alkyl hydroperoxides in acetonitrile solution if a small amount of pyridine is present in the solution. The binuclear complex 1 is the most active precatalyst in the oxidation whereas compound 2 containing the bipyridine ligand is much less efficient. The oxidation of cyclohexane at 60 °C and low concentration [1]0 = 10−7 M gave a turnover number (TON) of 200 200 after 24 h. A study of the selectivity parameters in the oxidation of linear and branched alkanes and the kinetic peculiarities of the cyclohexane oxidation led to the conclusion that the main reaction mechanism includes the formation of hydroxyl radicals. The effective activation energy Ea for the cyclohexane oxidation catalyzed by complex 1 was 10 ± 2 kcal mol−1. A kinetic analysis verified also that monomerization of complex 1 occurs before the oxidizing species is involved in the catalytic cycle. The 1-catalyzed reaction of cyclohexane, c-C6H12, with H216O2 in an atmosphere of 18O2 gave labeled cyclohexyl hydroperoxide, c-C6H11–18O–18OH. In addition, a small amount of “light” cyclohexanone, c-C6H1016O, is produced apparently via a mechanism which includes neither hydroxyl radicals nor incorporation of molecular oxygen from the atmosphere. The oxidation of benzene with H216O2 under 18O2 gave phenol which did not contain the 18O isotope. The reactions with cyclohexane and benzene were shown to proceed also via an alternative minor mechanism with oxo derivatives of high-valent osmium “OsO” as key oxidizing species.


Catalysis Science & Technology | 2015

Catalytic behaviour of a novel Fe(III) Schiff base complex in the mild oxidation of cyclohexane

Dmytro S. Nesterov; Oksana V. Nesterova; M. Fátima C. Guedes da Silva; Armando J. L. Pombeiro

The complex [FeIII(HL)Cl2(DMF)]Cl·DMF (1) was synthesized by reaction of Fe(III) chloride with a dimethylformamide solution of the Schiff base aminoalcohol HL (2-[(E)-{[2-(piperazin-1-yl)ethyl]imino}methyl]phenol) and characterized by single crystal X-ray diffraction analysis, thermogravimetry and spectroscopic methods. The catalytic investigations disclosed a marked activity of 1 towards oxidation of cyclohexane with hydrogen peroxide, under mild conditions, with yields based on cyclohexane up to 37% and TONs (turnover numbers) up to ca. 900. Kinetic experiments and selectivity parameters led to the conclusion that hydroxyl radicals are active (attacking C–H bonds) species in the studied catalytic reaction. Kinetic and UV/Vis spectrometry data revealed a complex nature of the processes occurring in the catalytic system, including the transformation of 1 into catalytically active species.


CrystEngComm | 2011

Direct synthesis and crystal structure of a new pentanuclear heterotrimetallic Cu/Co/Ni complex with 2-(dimethylamino)ethanol. Discussion of possible “butterfly-like” molecular structure types

Dmytro S. Nesterov; Claudia Graiff; Antonio Tiripicchio; Armando J. L. Pombeiro

The pentanuclear heterotrimetallic complex [Cu2CoNi2(Me2Ea)6Cl4] (1) has been prepared in a one-pot reaction of zerovalent copper with cobalt and nickel chlorides in an acetonitrile solution of 2-(dimethylamino)ethanol (HMe2Ea) in open air. The crystal structure displays a rare planar arrangement of the metal atoms. The possible pentanuclear molecular structure types corresponding to the planar and non-planar “butterfly-like” arrangements, as well as their derivatives, are analyzed and their statistical abundance is discussed. The thermogravimetric behaviour of 1 is investigated and compared with literature examples.


Inorganic Chemistry | 2018

High Catalytic Activity of Vanadium Complexes in Alkane Oxidations with Hydrogen Peroxide: An Effect of 8-Hydroxyquinoline Derivatives as Noninnocent Ligands

I. Gryca; Katarzyna Czerwińska; B. Machura; Anna Chrobok; Lidia S. Shul’pina; Maxim L. Kuznetsov; Dmytro S. Nesterov; Yuriy N. Kozlov; Armando J. L. Pombeiro; Ivetta A. Varyan; Georgiy B. Shul’pin

Five monomeric oxovanadium(V) complexes [VO(OMe)(N∩O)2] with the nitro or halogen substituted quinolin-8-olate ligands were synthesized and characterized using Fourier transform infrared, 1H and 13C NMR, high-resolution mass spectrometry-electrospray ionization as well as X-ray diffraction and UV-vis spectroscopy. These complexes exhibit high catalytic activity toward oxidation of inert alkanes to alkyl hydroperoxides by H2O2 in aqueous acetonitrile with the yield of oxygenate products up to 39% and turnover number 1780 for 1 h. The experimental kinetic study, the C6D12 and 18O2 labeled experiments, and density functional theory (DFT) calculations allowed to propose the reaction mechanism, which includes the formation of HO· radicals as active oxidizing species. The mechanism of the HO· formation appears to be different from those usually accepted for the Fenton or Fenton-like systems. The activation of H2O2 toward homolysis occurs upon simple coordination of hydrogen peroxide to the metal center of the catalyst molecule and does not require the change of the metal oxidation state and formation of the HOO· radical. Such an activation is associated with the redox-active nature of the quinolin-8-olate ligands. The experimentally determined activation energy for the oxidation of cyclohexane with complex [VO(OCH3)(5-Cl-quin)2] (quin = quinolin-8-olate) is 23 ± 3 kcal/mol correlating well with the estimate obtained from the DFT calculations.

Collaboration


Dive into the Dmytro S. Nesterov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian W. Skelton

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Vladimir N. Kokozay

Taras Shevchenko National University of Kyiv

View shared research outputs
Top Co-Authors

Avatar

Volodymyr N. Kokozay

Taras Shevchenko National University of Kyiv

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuriy N. Kozlov

Semenov Institute of Chemical Physics

View shared research outputs
Top Co-Authors

Avatar

Roman Boča

University of Pardubice

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge