Do-Kun Yoon
Catholic University of Korea
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Do-Kun Yoon.
Applied Physics Letters | 2014
Do-Kun Yoon; Joo-Young Jung; Tae Suk Suh
Three alpha particles are emitted from the point of reaction between a proton and boron. The alpha particles are effective in inducing the death of a tumor cell. After boron is accumulated in the tumor region, the emitted from outside the body proton can react with the boron in the tumor region. An increase of the protons maximum dose level is caused by the boron and only the tumor cell is damaged more critically. In addition, a prompt gamma ray is emitted from the proton boron reaction point. Here, we show that the effectiveness of the proton boron fusion therapy was verified using Monte Carlo simulations. We found that a dramatic increase by more than half of the protons maximum dose level was induced by the boron in the tumor region. This increase occurred only when the protons maximum dose point was located within the boron uptake region. In addition, the 719 keV prompt gamma ray peak produced by the proton boron fusion reaction was positively detected. This therapy method features the advantages such as the application of Bragg-peak to the therapy, the accurate targeting of tumor, improved therapy effects, and the monitoring of the therapy region during treatment.
Applied Physics Letters | 2014
Do-Kun Yoon; Joo-Young Jung; Key Jo Hong; Tae Suk Suh
Purpose of paper is to confirm the feasibility of acquisition of three dimensional single photon emission computed tomography image from boron neutron capture therapy using Monte Carlo simulation. Prompt gamma ray (478 keV) was used to reconstruct image with ordered subsets expectation maximization method. From analysis of receiver operating characteristic curve, area under curve values of three boron regions were 0.738, 0.623, and 0.817. The differences between length of centers of two boron regions and distance of maximum count points were 0.3 cm, 1.6 cm, and 1.4 cm.
Physica Medica | 2016
Han-Back Shin; Do-Kun Yoon; Joo-Young Jung; Moo-Sub Kim; Tae Suk Suh
PURPOSE The purpose of this study was to verify acquisition feasibility of a single photon emission computed tomography image using prompt gamma rays for proton boron fusion therapy (PBFT) and to confirm an enhanced therapeutic effect of PBFT by comparison with conventional proton therapy without use of boron. METHODS Monte Carlo simulation was performed to acquire reconstructed image during PBFT. We acquired percentage depth dose (PDD) of the proton beams in a water phantom, energy spectrum of the prompt gamma rays, and tomographic images, including the boron uptake region (BUR; target). The prompt gamma ray image was reconstructed using maximum likelihood expectation maximisation (MLEM) with 64 projection raw data. To verify the reconstructed image, both an image profile and contrast analysis according to the iteration number were conducted. In addition, the physical distance between two BURs in the region of interest of each BUR was measured. RESULTS The PDD of the proton beam from the water phantom including the BURs shows more efficient than that of conventional proton therapy on tumour region. A 719keV prompt gamma ray peak was clearly observed in the prompt gamma ray energy spectrum. The prompt gamma ray image was reconstructed successfully using 64 projections. Different image profiles including two BURs were acquired from the reconstructed image according to the iteration number. CONCLUSION We confirmed successful acquisition of a prompt gamma ray image during PBFT. In addition, the quantitative image analysis results showed relatively good performance for further study.
Physica Medica | 2016
Joo-Young Jung; Bo Lu; Do-Kun Yoon; Key Jo Hong; Hong-Seok Jang; Chihray Liu; Tae Suk Suh
We confirmed the feasibility of using our proposed system to extract two different kinds of functional images from a positron emission tomography (PET) module by using an insertable collimator during boron neutron capture therapy (BNCT). Coincidence events from a tumor region that included boron particles were identified by a PET scanner before BNCT; subsequently, the prompt gamma ray events from the same tumor region were collected after exposure to an external neutron beam through an insertable collimator on the PET detector. Five tumor regions that contained boron particles and were located in the water phantom and in the BNCT system with the PET module were simulated with Monte Carlo simulation code. The acquired images were quantitatively analyzed. Based on the receiver operating characteristic (ROC) curves in the five boron regions, A, B, C, D, and E, the PET and single-photon images were 10.2%, 11.7%, 8.2% (center region), 12.6%, and 10.5%, respectively. We were able to acquire simultaneously PET and single prompt photon images for tumor regions monitoring by using an insertable collimator without any additional isotopes.
Medical Physics | 2014
Do-Kun Yoon; Joo-Young Jung; Key Jo Hong; Keum Sil Lee; Tae Suk Suh
PURPOSE The purpose of this research is to perform the fast reconstruction of a prompt gamma ray image using a graphics processing unit (GPU) computation from boron neutron capture therapy (BNCT) simulations. METHODS To evaluate the accuracy of the reconstructed image, a phantom including four boron uptake regions (BURs) was used in the simulation. After the Monte Carlo simulation of the BNCT, the modified ordered subset expectation maximization reconstruction algorithm using the GPU computation was used to reconstruct the images with fewer projections. The computation times for image reconstruction were compared between the GPU and the central processing unit (CPU). Also, the accuracy of the reconstructed image was evaluated by a receiver operating characteristic (ROC) curve analysis. RESULTS The image reconstruction time using the GPU was 196 times faster than the conventional reconstruction time using the CPU. For the four BURs, the area under curve values from the ROC curve were 0.6726 (A-region), 0.6890 (B-region), 0.7384 (C-region), and 0.8009 (D-region). CONCLUSIONS The tomographic image using the prompt gamma ray event from the BNCT simulation was acquired using the GPU computation in order to perform a fast reconstruction during treatment. The authors verified the feasibility of the prompt gamma ray image reconstruction using the GPU computation for BNCT simulations.
Oncotarget | 2017
Joo-Young Jung; Do-Kun Yoon; B Barraclough; Heui Chang Lee; Tae Suk Suh; Bo Lu
The aim of this study is to compare between proton boron fusion therapy (PBFT) and boron neutron capture therapy (BNCT) and to analyze dose escalation using a Monte Carlo simulation. We simulated a proton beam passing through the water with a boron uptake region (BUR) in MCNPX. To estimate the interaction between neutrons/protons and borons by the alpha particle, the simulation yielded with a variation of the center of the BUR location and proton energies. The variation and influence about the alpha particle were observed from the percent depth dose (PDD) and cross-plane dose profile of both the neutron and proton beams. The peak value of the maximum dose level when the boron particle was accurately labeled at the region was 192.4% among the energies. In all, we confirmed that prompt gamma rays of 478 keV and 719 keV were generated by the nuclear reactions in PBFT and BNCT, respectively. We validated the dramatic effectiveness of the alpha particle, especially in PBFT. The utility of PBFT was verified using the simulation and it has a potential for application in radiotherapy.
Physica Medica | 2017
Han-Back Shin; Heesoon Sheen; Ho-Young Lee; Jihoon Kang; Do-Kun Yoon; Tae Suk Suh
PURPOSE In nuclear medicine, the standardized uptake value (SUV) obtained using positron emission tomography with 2-deoxy-2-fluoro-D-glucose (FDG-PET) is widely used as a semi-quantitative diagnosis factor. We found that the header file of the Philips Allegro PET scanner using the Digital Imaging and Communications in Medicine (DICOM) standard was stored differently than with other scanners. Thus, the purpose of this study was to develop a DICOM header information conversion program to ensure compatibility between Allegro and other equipment. METHODS AND RESULTS The NEMA IEC Body phantom was scanned using the Allegro PET scanner. We conducted measurements and performed calculations by using commercial software and the proposed self-developed program, respectively, to compare the SUVs by using conversion data. The program consists of three parts: an input part that can load data regardless of the number of DICOM images, and conversion and output parts that can be used to convert the DICOM header information and store it in the order of slices. The results of the calculation are in good agreement with the data measured at 12 circular regions of interest. The percent difference was lower than the 20%. CONCLUSION In conclusion, this study suggested a simple and convenient method to solve the incompatibility through conversion of the DICOM header information. This study thus provides physicians more accurate information for diagnosis and treatment.
AIP Advances | 2016
Joo-Young Jung; Do-Kun Yoon; Heui Chang Lee; Bo Lu; Tae Suk Suh
We conducted a quantitative study to identify the effectiveness of proton boron fusion therapy (PBFT). Four simulation scenarios were designed to investigate the escalation in total dose with the proton boron reaction using a Monte Carlo n-particle extended (MCNPX 2.6.0) simulation. The peak integrated dose was obtained for three different physical conditions (i.e., boron uptake region (BUR) thickness, BUR location, and boron concentration) with differing proton beam energy (60–90 MeV). We found that the peak integrated dose was increased by up to 96.62% compared to the pristine proton Bragg-peak. For the synergetic effect to take place with 60–70 MeV proton beam, the BUR had to be at least 0.3 cm thick while spanning the Bragg-peak. Similarly to the thickness, the BUR location needed to be within 0.3 cm from the Bragg-peak when the thickness was maintained at 0.9 cm. An effective proton boron reaction required the boron concentration to be equal to or greater than 14.4 mg/g. These results demonstrate the...
Oncotarget | 2018
Han-Back Shin; Moo-Sub Kim; Sunmi Kim; Kyu Bom Kim; Joo-Young Jung; Do-Kun Yoon; Tae Suk Suh
The purpose of this study is to evaluate the prompt gamma ray imaging technique according to the clinical boron concentration range during proton boron fusion therapy (PBFT). To acquire a prompt gamma ray image from 32 projections, we simulated four head single photon emission computed tomography and a proton beam nozzle using a Monte Carlo simulation. We used modified ordered subset expectation maximization reconstruction algorithm with a graphic processing unit for fast image acquisition. Boron concentration was set as 20 to 100 μg at intervals of 20 μg. For quantitative analysis of the prompt gamma ray image, we acquired an image profile drawn through two boron uptake regions (BURs) and calculated the contrast value, signal-to-noise ratio (SNR), and difference between the physical target volume and volume of the prompt gamma ray image. The relative counts of prompt gamma rays were noticeably increased with increasing boron concentration. Although the intensities on the image profiles showed a similar tendency according to the boron concentration, the SNR and contrast value were improved with increasing boron concentration. This study suggests that a tumor monitoring technique using prompt gamma ray detection can be clinically applicable even if the boron concentration is relatively low.
Journal of Radioanalytical and Nuclear Chemistry | 2018
Sunmi Kim; Do-Kun Yoon; Han-Back Shin; Moo-Sub Kim; Tae Suk Suh
This study analyzed the effectiveness attained through generation of three alpha particles in proton-boron fusion therapy (PBFT) based on a Monte Carlo simulation. PBFT is based on a fusion reaction between protons and boron. Three alpha particles are emitted from this reaction. The three alpha particles cause greater damage to tumor cells than the single alpha particle produced in the boron neutron capture reaction or conventional therapy. In addition, the intrinsic proton dose pattern follows Bragg-peak curve. We confirmed an energy deposition by the alpha particle and verified the therapeutic effect of the PBFT.