Hun-Joo Shin
Catholic University of Korea
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hun-Joo Shin.
PLOS ONE | 2014
Shin-Wook Kim; Hun-Joo Shin; Chul Seung Kay; Seok Hyun Son
Objective Boluses are used in high-energy radiotherapy in order to overcome the skin sparing effect. In practice though, commonly used flat boluses fail to make a perfect contact with the irregular surface of the patient’s skin, resulting in air gaps. Hence, we fabricated a customized bolus using a 3-dimensional (3D) printer and evaluated its feasibility for radiotherapy. Methods We designed two kinds of bolus for production on a 3D printer, one of which was the 3D printed flat bolus for the Blue water phantom and the other was a 3D printed customized bolus for the RANDO phantom. The 3D printed flat bolus was fabricated to verify its physical quality. The resulting 3D printed flat bolus was evaluated by assessing dosimetric parameters such as D1.5 cm, D5 cm, and D10 cm. The 3D printed customized bolus was then fabricated, and its quality and clinical feasibility were evaluated by visual inspection and by assessing dosimetric parameters such as Dmax, Dmin, Dmean, D90%, and V90%. Results The dosimetric parameters of the resulting 3D printed flat bolus showed that it was a useful dose escalating material, equivalent to a commercially available flat bolus. Analysis of the dosimetric parameters of the 3D printed customized bolus demonstrated that it is provided good dose escalation and good contact with the irregular surface of the RANDO phantom. Conclusions A customized bolus produced using a 3D printer could potentially replace commercially available flat boluses.
PLOS ONE | 2015
Jin Ho Song; Hun-Joo Shin; Chul Seung Kay; Seok Hyun Son
Objective To investigate the usefulness of the 3DVH software with an ArcCHECK 3D diode array detector in newly designed plans with various target sizes. Methods The isocenter dose was measured with an ion-chamber and was compared with the planned and 3DVH predicted doses. The 2D gamma passing rates were evaluated at the diode level by using the ArcCHECK detector. The 3D gamma passing rates for specific regions of interest (ROIs) were also evaluated by using the 3DVH software. Several dose-volume histograms (DVH)-based predicted metrics for all structures were also obtained by using the 3DVH software. Results The isocenter dose deviation was <1% in all plans except in the case of a 1 cm target. Besides the gamma passing rate at the diode level, the 3D gamma passing rate for specific ROIs tended to decrease with increasing target size; this was more noticeable when a more stringent gamma criterion was applied. No correlation was found with the gamma passing rates and the DVH-based metrics especially in the ROI with high-dose gradients. Conclusions Delivery quality assurance by using 3DVH and ArcCHECK can provide substantial information through a simple and easy approach, although the accuracy of this system should be judged cautiously.
Medical Dosimetry | 2016
Jina Kim; Y. Lee; Hun-Joo Shin; Sang-Hoon Ji; Sung-Kwang Park; Jin-Young Kim; Hong-Seok Jang; Young-nam Kang
Radiation treatment requires high accuracy to protect healthy organs and destroy the tumor. However, tumors located near the diaphragm constantly move during treatment. Respiration-gated radiotherapy has significant potential for the improvement of the irradiation of tumor sites affected by respiratory motion, such as lung and liver tumors. To measure and minimize the effects of respiratory motion, a realistic deformable phantom is required for use as a gold standard. The purpose of this study was to develop and study the characteristics of a deformable moving lung (DML) phantom, such as simulation, tissue equivalence, and rate of deformation. The rate of change of the lung volume, target deformation, and respiratory signals were measured in this study; they were accurately measured using a realistic deformable phantom. The measured volume difference was 31%, which closely corresponds to the average difference in human respiration, and the target movement was - 30 to + 32mm. The measured signals accurately described human respiratory signals. This DML phantom would be useful for the estimation of deformable image registration and in respiration-gated radiotherapy. This study shows that the developed DML phantom can exactly simulate the patient׳s respiratory signal and it acts as a deformable 4-dimensional simulation of a patient׳s lung with sufficient volume change.
PLOS ONE | 2017
Shin-Wook Kim; Hun-Joo Shin; J.K. Hwang; Jin-sol Shin; Sung-Kwang Park; Jin-Young Kim; Kijun Kim; Chul-Seung Kay; Young-nam Kang
Objective Various methods for radiation-dose calculation have been investigated over previous decades, focusing on the use of magnetic resonance imaging (MRI) only. The bulk-density-assignment method based on manual segmentation has exhibited promising results compared to dose-calculation with computed tomography (CT). However, this method cannot be easily implemented in clinical practice due to its time-consuming nature. Therefore, we investigated an automatic anatomy segmentation method with the intention of providing the proper methodology to evaluate synthetic CT images for a radiation-dose calculation based on MR images. Methods CT images of 20 brain cancer patients were selected, and their MR images including T1-weighted, T2-weighted, and PETRA were retrospectively collected. Eight anatomies of the patients, such as the body, air, eyeball, lens, cavity, ventricle, brainstem, and bone, were segmented for bulk-density-assigned CT image (BCT) generation. In addition, water-equivalent CT images (WCT) with only two anatomies—body and air—were generated for a comparison with BCT. Histogram comparison and gamma analysis were performed by comparison with the original CT images, after the evaluation of automatic segmentation performance with the dice similarity coefficient (DSC), false negative dice (FND) coefficient, and false positive dice (FPD) coefficient. Results The highest DSC value was 99.34 for air segmentation, and the lowest DSC value was 73.50 for bone segmentation. For lens segmentation, relatively high FND and FPD values were measured. The cavity and bone were measured as over-segmented anatomies having higher FPD values than FND. The measured histogram comparison results of BCT were better than those of WCT in all cases. In gamma analysis, the averaged improvement of BCT compared to WCT was measured. All the measured results of BCT were better than those of WCT. Therefore, the results of this study show that the introduced methods, such as histogram comparison and gamma analysis, are valid for the evaluation of the synthetic CT generation from MR images. Conclusions The image similarity results showed that BCT has superior results compared to WCT for all measurements performed in this study. Consequently, more accurate radiation treatment for the intracranial regions can be expected when the proper image similarity evaluation introduced in this study is performed.
Medical Physics | 2016
Hun-Joo Shin; Do-Kun Yoon; Ju-Young Jung; Myung-Suk Kim; Tae-Suk Suh
PURPOSE The purpose of this study is to suggest a tumor monitoring technique using prompt gamma rays emitted during the reaction between an antiproton and a boron particle, and to verify the increase of the therapeutic effectiveness of the antiproton boron fusion therapy using Monte Carlo simulation code. METHODS We acquired the percentage depth dose of the antiproton beam from a water phantom with and without three boron uptake regions (region A, B, and C) using F6 tally of MCNPX. The tomographic image was reconstructed using prompt gamma ray events from the reaction between the antiproton and boron during the treatment from 32 projections (reconstruction algorithm: MLEM). For the image reconstruction, we were performed using a 80 × 80 pixel matrix with a pixel size of 5 mm. The energy window was set as a 10 % energy window. RESULTS The prompt gamma ray peak for imaging was observed at 719 keV in the energy spectrum using the F8 tally fuction (energy deposition tally) of the MCNPX code. The tomographic image shows that the boron uptake regions were successfully identified from the simulation results. In terms of the receiver operating characteristic curve analysis, the area under the curve values were 0.647 (region A), 0.679 (region B), and 0.632 (region C). The SNR values increased as the tumor diameter increased. The CNR indicated the relative signal intensity within different regions. The CNR values also increased as the different of BURs diamter increased. CONCLUSION We confirmed the feasibility of tumor monitoring during the antiproton therapy as well as the superior therapeutic effect of the antiproton boron fusion therapy. This result can be beneficial for the development of a more accurate particle therapy.
Medical Physics | 2016
Su-Young Kim; Tae-Suk Suh; Do-Kun Yoon; Ju-Young Jung; Hun-Joo Shin; Myung-Suk Kim
PURPOSE The purpose of this research is to perform the fast reconstruction of a prompt gamma ray image using a graphics processing unit (GPU) computation from boron neutron capture therapy (BNCT) simulations. METHODS To evaluate the accuracy of the reconstructed image, a phantom including four boron uptake regions (BURs) was used in the simulation. After the Monte Carlo simulation of the BNCT, the modified ordered subset expectation maximization reconstruction algorithm using the GPU computation was used to reconstruct the images with fewer projections. The computation times for image reconstruction were compared between the GPU and the central processing unit (CPU). Also, the accuracy of the reconstructed image was evaluated by a receiver operating characteristic (ROC) curve analysis. RESULTS The image reconstruction time using the GPU was 196 times faster than the conventional reconstruction time using the CPU. For the four BURs, the area under curve values from the ROC curve were 0.6726 (A-region), 0.6890 (B-region), 0.7384 (C-region), and 0.8009 (D-region). CONCLUSION The tomographic image using the prompt gamma ray event from the BNCT simulation was acquired using the GPU computation in order to perform a fast reconstruction during treatment. The authors verified the feasibility of the prompt gamma ray reconstruction using the GPU computation for BNCT simulations.
Medical Physics | 2016
Myung-Suk Kim; Ju-Young Jung; Do-Kun Yoon; Hun-Joo Shin; Su-Young Kim; Tae-Suk Suh
PURPOSE Respiratory gated radiation therapy (RGRT) gives accurate results when a patients breathing is stable and regular. Thus, the patient should be fully aware during respiratory pattern training before undergoing the RGRT treatment. In order to bypass the process of respiratory pattern training, we propose a target location prediction system for RGRT that uses only natural respiratory volume, and confirm its application. METHODS In order to verify the proposed target location prediction system, an in-house phantom set was used. This set involves a chest phantom including target, external markers, and motion generator. Natural respiratory volume signals were generated using the random function in MATLAB code. In the chest phantom, the target takes a linear motion based on the respiratory signal. After a four-dimensional computed tomography (4DCT) scan of the in-house phantom, the motion trajectory was derived as a linear equation. The accuracy of the linear equation was compared with that of the motion algorithm used by the operating motion generator. In addition, we attempted target location prediction using random respiratory volume values. RESULTS The correspondence rate of the linear equation derived from the 4DCT images with the motion algorithm of the motion generator was 99.41%. In addition, the average error rate of target location prediction was 1.23% for 26 cases. CONCLUSION We confirmed the applicability of our proposed target location prediction system for RGRT using natural respiratory volume. If additional clinical studies can be conducted, a more accurate prediction system can be realized without requiring respiratory pattern training.
Medical Physics | 2015
Hun-Joo Shin; Do-Kun Yoon; Ju-Young Jung; Myung-Suk Kim; Hong-Seok Jang; Tae-Suk Suh
Purpose: The purpose of this study is to verify the acquisition of the three dimensional single photon emission computed tomography (SPECT) image using prompt gamma ray originated from proton boron fusion therapy (PBFT). Methods: The real-time imaging system during the PBFT was simulated to acquire the tomographic image of the prompt gamma ray from treated tumor by the proton boron reaction, using Monte Carlo simulation (MCNPX). We acquired percentage depth dose (PDD) of the proton beam in the water phantom including the boron uptake region (BUR), the energy spectra of the prompt gamma ray and tomographic image which can show treated tumor regions. The prompt gamma ray image was reconstructed using maximum likelihood estimation maximization (MLEM) reconstruction algorithm with 64 projections. In addition, in order to evaluate the reconstructed image, the image profiles between BURs were extracted from the image. Results: In the PDD results, the Bragg-peak was amplified definitely when the proton’s maximum dose level was located at the BUR. This amplification is based on the generation of alpha particles. In addition, the prompt gamma ray peak of 719 keV was observed from the energy spectrum. Through the previous process, the tomographic image of prompt gamma ray from the BUR was reconstructed. The line profile was extracted from image including BURs, and it shows high signal-to-noise ratio. Conclusion: We confirmed that the real-time prompt gamma ray image during the PBFT was successfully deducted, and results of quantitative image analysis show good agreement with the original pattern of the BUR. This study first verified the imaging capability of the PBFT-SPECT system. In conclusion, the PBFT-SPECT system can realize the treated tumor monitoring during the PBFT.
Archive | 2009
Young-nam Kang; Jisun Jang; Byung-Ock Choi; Hong-Suk Jang; Ji-Young Jung; Hun-Joo Shin; Jae-Hyuk Seo; Ihl-Bohng Choi; Dong-Joon Lee; Soo-Il Kwon
In this study, we performed BANG-3® polymer gel dosimetry to propose an experimental technique for relative output factor and 3D dose distribution measurements of small radiosurgical fields.We were irradiated 2 collimators (5 and 30 mm diameter) with 6 MV radiosurgery beam. And, MR scanned with the same slice thickness and three different in plane resolutions. In these experiments, output factor measurements with the Pin Point ion chamber and diode, EBT films are compared with BANG-3® polymer gel. We used a spherical phantom filled with BANG-3® polymer gel to measure 3D dose distributions. The irradiated phantom was scanned with an MRI scanner. Dose distributions were obtained by calibrating the polymer gel for a relationship between the absorbed dose and the spin-spin relaxation rate of the magnetic resistance signal.
Radiation Oncology | 2013
Jin Ho Song; Hun-Joo Shin; Chul Seung Kay; Soo-Min Chae; Seok Hyun Son