Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Do Young Lim is active.

Publication


Featured researches published by Do Young Lim.


Cancer Research | 2013

TRAF4 Is a Critical Molecule for Akt Activation in Lung Cancer

Wei Li; Cong Peng; Mee Hyun Lee; Do Young Lim; Feng Zhu; Yang Fu; Yang G; Yuqiao Sheng; Lanbo Xiao; Xin Dong; Wei Ya Ma; Ann M. Bode; Ya Cao; Zigang Dong

TRAF4 is an adapter protein overexpressed in certain cancers, but its contributions to tumorigenesis are unclear. In lung cancer cells and primary lung tumors, we found that TRAF4 is overexpressed. RNA interference-mediated attenuation of TRAF4 expression blunted the malignant phenotype in this setting, exerting inhibitory effects on cell proliferation, anchorage-independent growth, and tumor development in a xenograft mouse model. Unexpectedly, we discovered that TRAF4, but not Skp2, was required for activation of the pivotal cell survival kinase Akt through ubiquitination. Furthermore, TRAF4 attenuation impaired glucose metabolism by inhibiting expression of Glut1 and HK2 mediated by the Akt pathway. Overall, our work suggests that TRAF4 offers a candidate molecular target for lung cancer prevention and therapy.


Cancer Prevention Research | 2014

Curcumin Suppresses Proliferation of Colon Cancer Cells by Targeting CDK2

Tae Gyu Lim; Sung Young Lee; Zunnan Huang; Do Young Lim; Hanyong Chen; Sung Keun Jung; Ann M. Bode; Ki Won Lee; Zigang Dong

Curcumin, the yellow pigment of turmeric found in Southeast Indian food, is one of the most popular phytochemicals for cancer prevention. Numerous reports have demonstrated modulation of multiple cellular signaling pathways by curcumin and its molecular targets in various cancer cell lines. To identify a new molecular target of curcumin, we used shape screening and reverse docking to screen the Protein Data Bank against curcumin. Cyclin-dependent kinase 2 (CDK2), a major cell-cycle protein, was identified as a potential molecular target of curcumin. Indeed, in vitro and ex vivo kinase assay data revealed a dramatic suppressive effect of curcumin on CDK2 kinase activity. Furthermore, curcumin induced G1 cell-cycle arrest, which is regulated by CDK2 in HCT116 cells. Although the expression levels of CDK2 and its regulatory subunit, cyclin E, were not changed, the phosphorylation of retinoblastoma (Rb), a well-known CDK2 substrate, was reduced by curcumin. Because curcumin induced cell-cycle arrest, we investigated the antiproliferative effect of curcumin on HCT116 colon cancer cells. In this experiment, curcumin suppressed HCT116 cell proliferation effectively. To determine whether CDK2 is a direct target of curcumin, CDK2 expression was knocked down in HCT116 cells. As expected, HCT116 sh-CDK2 cells exhibited G1 arrest and reduced proliferation. Because of the low levels of CDK2 in HCT116 sh-CDK2 cells, the effects of curcumin on G1 arrest and cell proliferation were not substantially relative to HCT116 sh-control cells. From these results, we identified CDK2 as a direct target of curcumin in colon cancer cells. Cancer Prev Res; 7(4); 466–74. ©2014 AACR.


Journal of Biological Chemistry | 2014

Isoliquiritigenin Induces Apoptosis and Inhibits Xenograft Tumor Growth of Human Lung Cancer Cells by Targeting Both Wild Type and L858R/T790M Mutant EGFR

Sung Keun Jung; Mee Hyun Lee; Do Young Lim; Jong Eun Kim; Puja Singh; Sung Young Lee; Chul Ho Jeong; Tae Gyu Lim; Hanyong Chen; Young In Chi; Joydeb Kumar Kundu; Nam Hyouck Lee; Charles M. C. Lee; Yong Yeon Cho; Ann M. Bode; Ki Won Lee; Zigang Dong

Background: Non-small-cell lung cancer (NSCLC) exhibits EGFR mutation. Results: Treatment with isoliquiritigenin (ILQ) inhibited growth and induced apoptosis in tyrosine kinase inhibitor-sensitive and -resistant NSCLC cells. ILQ suppressed wild type and mutant (L858R/T790M) EGFR kinase activity and attenuated H1975 lung cancer cell xenograft tumor growth. Conclusion: ILQ directly targets wild type or mutant EGFR. Significance: ILQ could be a potential therapeutic agent against NSCLC. Non-small-cell lung cancer (NSCLC) is associated with diverse genetic alterations including mutation of epidermal growth factor receptor (EGFR). Isoliquiritigenin (ILQ), a chalcone derivative, possesses anticancer activities. In the present study, we investigated the effects of ILQ on the growth of tyrosine kinase inhibitor (TKI)-sensitive and -resistant NSCLC cells and elucidated its underlying mechanisms. Treatment with ILQ inhibited growth and induced apoptosis in both TKI-sensitive and -resistant NSCLC cells. ILQ-induced apoptosis was associated with the cleavage of caspase-3 and poly-(ADP-ribose)-polymerase, increased expression of Bim, and reduced expression of Bcl-2. In vitro kinase assay results revealed that ILQ inhibited the catalytic activity of both wild type and double mutant (L858R/T790M) EGFR. Treatment with ILQ inhibited the anchorage-independent growth of NIH3T3 cells stably transfected with either wild type or double-mutant EGFR with or without EGF stimulation. ILQ also reduced the phosphorylation of Akt and ERK1/2 in both TKI-sensitive and -resistant NSCLC cells, and attenuated the kinase activity of Akt1 and ERK2 in vitro. ILQ directly interacted with both wild type and double-mutant EGFR in an ATP-competitive manner. A docking model study showed that ILQ formed two hydrogen bonds (Glu-762 and Met-793) with wild type EGFR and three hydrogen bonds (Lys-745, Met-793, and Asp-855) with mutant EGFR. ILQ attenuated the xenograft tumor growth of H1975 cells, which was associated with decreased expression of Ki-67 and diminished phosphorylation of Akt and ERK1/2. Taken together, ILQ suppresses NSCLC cell growth by directly targeting wild type or mutant EGFR.


Cancer Prevention Research | 2014

Naproxen induces cell-cycle arrest and apoptosis in human urinary bladder cancer cell lines and chemically induced cancers by targeting PI3K

Mi Sung Kim; Jong Eun Kim; Do Young Lim; Zunnan Huang; Hanyong Chen; Alyssa Langfald; Ronald A. Lubet; Clinton J. Grubbs; Zigang Dong; Ann M. Bode

Naproxen [(S)-6-methoxy-α-methyl-2-naphthaleneacetic acid] is a potent nonsteroidal anti-inflammatory drug that inhibits both COX-1 and COX-2 and is widely used as an over-the-counter medication. Naproxen exhibits analgesic, antipyretic, and anti-inflammatory activities. Naproxen, as well as other nonsteroidal anti-inflammatory drug, has been reported to be effective in the prevention of urinary bladder cancer in rodents. However, potential targets other than the COX isozymes have not been reported. We examined potential additional targets in urinary bladder cancer cells and in rat bladder cancers. Computer kinase profiling results suggested that phosphoinositide 3-kinase (PI3K) is a potential target for naproxen. In vitro kinase assay data revealed that naproxen interacts with PI3K and inhibits its kinase activity. Pull-down binding assay data confirmed that PI3K directly binds with naproxen in vitro and ex vivo. Western blot data showed that naproxen decreased phosphorylation of Akt, and subsequently decreased Akt signaling in UM-UC-5 and UM-UC-14 urinary bladder cancer cells. Furthermore, naproxen suppressed anchorage-independent cell growth and decreased cell viability by targeting PI3K in both cell lines. Naproxen caused an accumulation of cells at the G1 phase mediated through cyclin-dependent kinase 4, cyclin D1, and p21. Moreover, naproxen induced significant apoptosis, accompanied with increased levels of cleaved caspase-3, caspase-7, and PARP in both cell types. Naproxen-induced cell death was mainly because of apoptosis in which a prominent downregulation of Bcl-2 and upregulation of Bax were involved. Naproxen also caused apoptosis and inhibited Akt phosphorylation in rat urinary bladder cancers induced by N-butyl-N-(4-hydroxybutyl)-nitrosamine. Cancer Prev Res; 7(2); 236–45. ©2013 AACR.


International Journal of Molecular Sciences | 2013

Mechanisms by Which Licochalcone E Exhibits Potent Anti-Inflammatory Properties: Studies with Phorbol Ester-Treated Mouse Skin and Lipopolysaccharide-Stimulated Murine Macrophages

Han Na Lee; Han Jin Cho; Do Young Lim; Young-Hee Kang; Ki Won Lee; Jung Han Yoon Park

In this study we found that licochalcone E (LicE), a recently isolated retrochalcone from Glycyrrhiza inflata, exhibits potent anti-inflammatory effects in 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced mouse ear edema and lipopolysaccharide (LPS)-stimulated RAW 264.7 murine macrophage models. Topical application of LicE (0.5–2 mg) effectively inhibited TPA-induced (1) ear edema formation; (2) phosphorylation of stress-activated protein kinase/c-Jun-N-terminal kinase (SAPK/JNK), c-Jun, and extracellular signal regulated kinase 1/2; and (3) expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 proteins in mouse skin. The treatment of RAW 264.7 cells with LicE (2.5–7.5 μmol/L) induced a profound reduction in LPS-induced (1) release of NO and prostaglandin E2; (2) mRNA expression and secretion of interleukin (IL)-6, IL-1β and tumor necrosis factor-α; (3) promoter activity of iNOS and COX-2 and expression of their corresponding mRNAs and proteins; (4) activation of AKT, p38 mitogen activated protein kinase (MAPK), SAPK/JNK and c-Jun; (5) phosphorylation of inhibitor of κB (IκB) kinase-αβ and IκBα, degradation of IκBα, translocation of p65 (RelA) to the nucleus and transcriptional activity of nuclear factor (NF)-κB; and (6) transcriptional activity of activator protein (AP)-1. These results indicate that the LicE inhibition of NF-κB and AP-1 transcriptional activity through the inhibition of AKT and MAPK activation contributes to decreases in the expression of pro-inflammatory cytokines and the inducible enzymes iNOS and COX-2.


Cancer Prevention Research | 2014

Caffeic Acid Directly Targets ERK1/2 to Attenuate Solar UV-Induced Skin Carcinogenesis.

Yang G; Yang Fu; Margarita Malakhova; Igor Kurinov; Feng Zhu; Ke Yao; Haitao Li; Hanyong Chen; Wei Li; Do Young Lim; Yuqiao Sheng; Ann M. Bode; Zigang Dong

Caffeic acid (3,4-dihydroxycinnamic acid) is a well-known phenolic phytochemical present in coffee and reportedly has anticancer activities. However, the underlying molecular mechanisms and targeted proteins involved in the suppression of carcinogenesis by caffeic acid are not fully understood. In this study, we report that caffeic acid significantly inhibits colony formation of human skin cancer cells and EGF-induced neoplastic transformation of HaCaT cells dose-dependently. Caffeic acid topically applied to dorsal mouse skin significantly suppressed tumor incidence and volume in a solar UV (SUV)–induced skin carcinogenesis mouse model. A substantial reduction of phosphorylation in mitogen-activated protein kinase signaling was observed in mice treated with caffeic acid either before or after SUV exposure. Caffeic acid directly interacted with ERK1/2 and inhibited ERK1/2 activities in vitro. Importantly, we resolved the cocrystal structure of ERK2 complexed with caffeic acid. Caffeic acid interacted directly with ERK2 at amino acid residues Q105, D106, and M108. Moreover, A431 cells expressing knockdown of ERK2 lost sensitivity to caffeic acid in a skin cancer xenograft mouse model. Taken together, our results suggest that caffeic acid exerts chemopreventive activity against SUV-induced skin carcinogenesis by targeting ERK1 and 2. Cancer Prev Res; 7(10); 1056–66. ©2014 AACR.


Molecular Carcinogenesis | 2015

Butein, a Novel Dual Inhibitor of MET and EGFR, Overcomes Gefitinib-Resistant Lung Cancer Growth

Sung Keun Jung; Mee Hyun Lee; Do Young Lim; Sung Young Lee; Chul Ho Jeong; Jong Eun Kim; Tae Gyu Lim; Hanyong Chen; Ann M. Bode; Hyong Joo Lee; Ki Won Lee; Zigang Dong

Lung cancer is a leading cause of death worldwide and MET amplification is a major therapeutic limitation in acquired‐resistance lung cancer. We hypothesized that butein, a phytochemical, can overcome gefitinib‐induced resistance by targeting both EGFR and MET in non‐small cell lung cancer (NSCLC). To investigate the ability of butein to target EGFR and MET, we used in silico docking, a library of natural compounds and kinase assays. The effects of butein on growth, induction of apoptosis and expression of EGFR/MET signaling targets were examined in HCC827 (gefitinib‐sensitive) and HCC827GR (gefitinib‐resistant) NSCLC cells. Results were confirmed in vivo by a HCC827 or HCC827GR cell xenograft mouse model, each treated with vehicle, butein or gefitinib. Butein inhibited phosphorylation and kinase activity of EGFR and MET as well as soft agar colony formation and decreased viability of HCC827 and HCC827GR cells. Butein increased apoptosis‐related protein expression in these cells. Results were confirmed by co‐treatment with inhibitors of EGFR/MET or double knock‐down. Finally, xenograft study results showed that butein strongly suppressed HCC827 and HCC827GR tumor growth. Immunohistochemical data suggest that butein inhibited Ki‐67 expression. These results indicate that butein has potent anticancer activity and targets both EGFR and MET in acquired‐resistance NSCLC.


Cancer Research | 2013

Identification of an Aurora Kinase Inhibitor Specific for the Aurora B Isoform

Hua Xie; Mee Hyun Lee; Feng Zhu; Kanamata Reddy; Cong Peng; Yan Li; Do Young Lim; Dong Joon Kim; Xiang Li; Soouk Kang; Haitao Li; Wei Ya Ma; Ronald A. Lubet; Jian Ding; Ann M. Bode; Zigang Dong

Aurora kinases play an important role in chromosome alignment, segregation, and cytokinesis during mitosis. In the present study, we used a ligand docking method to explore the novel scaffold of potential Aurora B inhibitors. One thousand compounds from our in-house compound library were screened against the Aurora B structure and one compound, (E)-3-((E)-4-(benzo[d][1,3]dioxol-5-yl)-2-oxobut-3-en-1-ylidene)indolin-2-one (designated herein as HOI-07) was selected for further study. HOI-07 potently inhibited in vitro Aurora B kinase activity in a dose-dependent manner, without obvious inhibition of another 49 kinases, including Aurora A. This compound suppressed Aurora B kinase activity in lung cancer cells, evidenced by the inhibition of the phosphorylation of histone H3 on Ser10 in a dose- and time-dependent manner. This inhibition resulted in apoptosis induction, G(2)-M arrest, polyploidy cells, and attenuation of cancer cell anchorage-independent growth. Moreover, knocking down the expression of Aurora B effectively reduced the sensitivity of cancer cells to HOI-07. Results of an in vivo xenograft mouse study showed that HOI-07 treatment effectively suppressed the growth of A549 xenografts, without affecting the body weight of mice. The expression of phospho-histone H3, phospho-Aurora B, and Ki-67 was also suppressed in the HOI-07 treatment group. Taken together, we identified HOI-07 as a specific Aurora B inhibitor, which deserves further investigation.


Stem Cell Research | 2014

JNK1 and 2 play a negative role in reprogramming to pluripotent stem cells by suppressing Klf4 activity.

Ke Yao; Myoung Ok Ki; Hanyong Chen; Yong Yeon Cho; Sung Hyun Kim; Dong Hoon Yu; Sung Young Lee; Kun Yeong Lee; Kibeom Bae; Cong Peng; Do Young Lim; Ann M. Bode; Zigang Dong

Embryonic stem (ES) cells are pluripotent cells with the capacity for unlimited self-renewal or differentiation. Inhibition of MAPK pathways enhances mouse ES cell pluripotency characteristics. Compared to wildtype ES cells, jnk2(-/-) ES cells displayed a much higher growth rate. To determine whether JNKs are required for stem cell self-renewal or differentiation, we performed a phosphorylation kinase array assay to compare mouse ES cells under LIF+ or LIF- culture conditions. The data showed that activation of JNKs was induced by LIF withdrawal. We also found that JNK1 or 2 phosphorylated Klf4 at threonines 224 and 225. Activation of JNK signaling and phosphorylation of Klf4 inhibited Klf4 transcription and transactivation activity. Importantly, jnk1(-/-) and jnk2(-/-) murine embryonic fibroblasts (MEFs) exhibited a significantly greater potency in the ability to increase the number of iPS colonies compared with jnk wildtype MEFs. Overall, our results demonstrated that JNK1 and 2 play a negative role in reprogramming to pluripotent stem cells by suppressing Klf4 activity.


Molecular Cancer Therapeutics | 2013

Discovery of the novel mTOR inhibitor and its antitumor activities in vitro and in vivo

Hua Xie; Mee Hyun Lee; Feng Zhu; Kanamata Reddy; Zunnan Huang; Dong Joon Kim; Yan Li; Cong Peng; Do Young Lim; Soouk Kang; Sung Keun Jung; Xiang Li; Haitao Li; Wei Ya Ma; Ronald A. Lubet; Jian Ding; Ann M. Bode; Zigang Dong

The phosphoinositide 3-kinase (PI3-K)/Akt and mTOR signaling pathway plays a critical role in cell survival and proliferation and is often aberrantly activated in many types of cancer. The mTOR kinase protein, one of the key molecules in this pathway, has been shown to be an important target for cancer therapy. In the present study, a ligand docking method was used to screen for novel scaffold mTOR inhibitors. Sixty thousand compounds in the Natural Product Database were screened against the mTOR homologous structure, and 13 commercially available compounds listed in the top-ranked 100 compounds were selected for further examination. Compound [(E)-3-(4-(benzo[d][1,3]dioxol-5-yl)-2-oxobut-3-en-1-yl)- 3-hydroxyindolin-2-one; designated herein as 3HOI-BA-01] was then selected for further study of its antitumor activity. An in vitro study has shown that 3HOI-BA-01 inhibited mTOR kinase activity in a dose-dependent manner by directly binding with mTOR. In a panel of non–small cell lung cancer cells, the compound also attenuated mTOR downstream signaling, including the phosphorylation of p70S6K, S6, and Akt, resulting in G1 cell-cycle arrest and growth inhibition. Results of an in vivo study have shown that intraperitoneal injection of 3HOI-BA-01 in A549 lung tumor–bearing mice effectively suppressed cancer growth without affecting the body weight of the mice. The expression of downstream signaling molecules in the mTOR pathway in tumor tissues was also reduced after 3HOI-BA-01 treatment. Taken together, we identified 3HOI-BA-01 as a novel and effective mTOR inhibitor. Mol Cancer Ther; 12(6); 950–8. ©2013 AACR.

Collaboration


Dive into the Do Young Lim's collaboration.

Top Co-Authors

Avatar

Zigang Dong

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar

Ann M. Bode

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar

Hanyong Chen

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar

Mee Hyun Lee

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Feng Zhu

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar

Haitao Li

University of Minnesota

View shared research outputs
Researchain Logo
Decentralizing Knowledge