Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Domagoj Vucic is active.

Publication


Featured researches published by Domagoj Vucic.


Nature | 2004

Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf.

Sanjeev Mariathasan; Kim Newton; Denise M. Monack; Domagoj Vucic; Dorothy French; Wyne P. Lee; Meron Roose-Girma; Sharon Erickson; Vishva M. Dixit

Specific adaptors regulate the activation of initiator caspases; for example, FADD and Apaf-1 engage caspases 8 and 9, respectively. The adaptors ASC, Ipaf and RIP2 have each been proposed to regulate caspase-1 (also called interleukin (IL)-1 converting enzyme), which is activated within the ‘inflammasome’, a complex comprising several adaptors. Here we show the impact of ASC-, Ipaf- or RIP2-deficiency on inflammasome function. ASC was essential for extracellular ATP-driven activation of caspase-1 in toll-like receptor (TLR)-stimulated macrophages. Accordingly, ASC-deficient macrophages exhibited defective maturation of IL-1β and IL-18, and ASC-null mice were resistant to lipopolysaccharide-induced endotoxic shock. Furthermore, activation of caspase-1 in response to an intracellular pathogen (Salmonella typhimurium) was abrogated severely in ASC-null macrophages. Unexpectedly, Ipaf-deficient macrophages activated caspase-1 in response to TLR plus ATP stimulation but not S. typhimurium. Caspase-1 activation was not compromised by loss of RIP2. These data show that whereas ASC is key to caspase-1 activation within the inflammasome, Ipaf provides a special conduit to the inflammasome for signals triggered by intracellular pathogens. Notably, cell death triggered by stimuli that engage caspase-1 was ablated in macrophages lacking either ASC or Ipaf, suggesting a coupling between the inflammatory and cell death pathways.


Cell | 2007

IAP Antagonists Induce Autoubiquitination of c-IAPs, NF-κB Activation, and TNFα-Dependent Apoptosis

Eugene Varfolomeev; John W. Blankenship; Sarah M. Wayson; Anna V. Fedorova; Nobuhiko Kayagaki; Parie Garg; Kerry Zobel; Jasmin N. Dynek; Linda O. Elliott; Heidi J.A. Wallweber; John A. Flygare; Wayne J. Fairbrother; Kurt Deshayes; Vishva M. Dixit; Domagoj Vucic

Inhibitor of apoptosis (IAP) proteins are antiapoptotic regulators that block cell death in response to diverse stimuli. They are expressed at elevated levels in human malignancies and are attractive targets for the development of novel cancer therapeutics. Herein, we demonstrate that small-molecule IAP antagonists bind to select baculovirus IAP repeat (BIR) domains resulting in dramatic induction of auto-ubiquitination activity and rapid proteasomal degradation of c-IAPs. The IAP antagonists also induce cell death that is dependent on TNF signaling and de novo protein biosynthesis. Additionally, the c-IAP proteins were found to function as regulators of NF-kappaB signaling. Through their ubiquitin E3 ligase activities c-IAP1 and c-IAP2 promote proteasomal degradation of NIK, the central ser/thr kinase in the noncanonical NF-kappaB pathway.


Nature Reviews Drug Discovery | 2012

Targeting IAP proteins for therapeutic intervention in cancer

Simone Fulda; Domagoj Vucic

Evasion of apoptosis is one of the crucial acquired capabilities used by cancer cells to fend off anticancer therapies. Inhibitor of apoptosis (IAP) proteins exert a range of biological activities that promote cancer cell survival and proliferation. X chromosome-linked IAP is a direct inhibitor of caspases — pro-apoptotic executioner proteases — whereas cellular IAP proteins block the assembly of pro-apoptotic protein signalling complexes and mediate the expression of anti-apoptotic molecules. Furthermore, mutations, amplifications and chromosomal translocations of IAP genes are associated with various malignancies. Among the therapeutic strategies that have been designed to target IAP proteins, the most widely used approach is based on mimicking the IAP-binding motif of second mitochondria-derived activator of caspase (SMAC), which functions as an endogenous IAP antagonist. Alternative strategies include transcriptional repression and the use of antisense oligonucleotides. This Review provides an update on IAP protein biology as well as current and future perspectives on targeting IAP proteins for therapeutic intervention in human malignancies.


Journal of Biological Chemistry | 2008

c-IAP1 and c-IAP2 Are Critical Mediators of Tumor Necrosis Factor α (TNFα)-induced NF-κB Activation

Eugene Varfolomeev; Tatiana Goncharov; Anna V. Fedorova; Jasmin N. Dynek; Kerry Zobel; Kurt Deshayes; Wayne J. Fairbrother; Domagoj Vucic

The inhibitor of apoptosis (IAP) proteins are a family of anti-apoptotic regulators found in viruses and metazoans. c-IAP1 and c-IAP2 are recruited to tumor necrosis factor receptor 1 (TNFR1)-associated complexes where they can regulate receptor-mediated signaling. Both c-IAP1 and c-IAP2 have been implicated in TNFα-stimulated NF-κB activation. However, individual c-IAP1 and c-IAP2 gene knock-outs in mice did not reveal changes in TNF signaling pathways, and the phenotype of a combined deficiency of c-IAPs has yet to be reported. Here we investigate the role of c-IAP1 and c-IAP2 in TNFα-stimulated activation of NF-κB. We demonstrate that TNFα-induced NF-κB activation is severely diminished in the absence of both c-IAP proteins. In addition, combined absence of c-IAP1 and c-IAP2 rendered cells sensitive to TNFα-induced cell death. Using cells with genetic ablation of c-IAP1 or cells where the c-IAP proteins were eliminated using IAP antagonists, we show that TNFα-induced RIP1 ubiquitination is abrogated in the absence of c-IAPs. Furthermore, we reconstitute the ubiquitination process with purified components in vitro and demonstrate that c-IAP1, in collaboration with the ubiquitin conjugating enzyme (E2) enzyme UbcH5a, mediates polymerization of Lys-63-linked chains on RIP1. Therefore, c-IAP1 and c-IAP2 are required for TNFα-stimulated RIP1 ubiquitination and NF-κB activation.


Current Biology | 2000

ML-IAP, a novel inhibitor of apoptosis that is preferentially expressed in human melanomas

Domagoj Vucic; Henning R. Stennicke; Maria Teresa Pisabarro; Guy S. Salvesen; Vishva M. Dixit

BACKGROUND Inhibitors of apoptosis (IAPs) are a family of cell death inhibitors found in viruses and metazoans. All IAPs have at least one baculovirus IAP repeat (BIR) motif that is essential for their anti-apoptotic activity. IAPs physically interact with a variety of pro-apoptotic proteins and inhibit apoptosis induced by diverse stimuli. This allows them to function as sensors and inhibitors of death signals that emanate from a variety of pathways. RESULTS Here we report the characterization of ML-IAP, a novel human IAP that contains a single BIR and RING finger motif. ML-IAP is a powerful inhibitor of apoptosis induced by death receptors and chemotherapeutic agents, probably functioning as a direct inhibitor of downstream effector caspases. Modeling studies of the structure of the BIR domain revealed it to closely resemble the fold determined for the BIR2 domain of X-IAP. Deletion and mutational analysis demonstrated that integrity of the BIR domain was required for anti-apoptotic function. Tissue survey analysis showed expression in a number of embryonic tissues and tumor cell lines. In particular, the majority of melanoma cell lines expressed high levels of ML-IAP in contrast to primary melanocytes, which expressed undetectable levels. These melanoma cells were significantly more resistant to drug-induced apoptosis. CONCLUSIONS ML-IAP, a novel human IAP, inhibits apoptosis induced by death receptors and chemotherapeutic agents. The BIR of ML-IAP possesses an evolutionarily conserved fold that is necessary for anti-apoptotic activity. Elevated expression of ML-IAP renders melanoma cells resistant to apoptotic stimuli and thereby potentially contributes to the pathogenesis of this malignancy.


Journal of Biological Chemistry | 2008

c-IAP1 and c-IAP2 are critical mediators of TNFα-induced NF-κB activation

Eugene Varfolomeev; Tatiana Goncharov; Anna V. Fedorova; Jasmin N. Dynek; Kerry Zobel; Kurt Deshayes; Wayne J. Fairbrother; Domagoj Vucic

The inhibitor of apoptosis (IAP) proteins are a family of anti-apoptotic regulators found in viruses and metazoans. c-IAP1 and c-IAP2 are recruited to tumor necrosis factor receptor 1 (TNFR1)-associated complexes where they can regulate receptor-mediated signaling. Both c-IAP1 and c-IAP2 have been implicated in TNFα-stimulated NF-κB activation. However, individual c-IAP1 and c-IAP2 gene knock-outs in mice did not reveal changes in TNF signaling pathways, and the phenotype of a combined deficiency of c-IAPs has yet to be reported. Here we investigate the role of c-IAP1 and c-IAP2 in TNFα-stimulated activation of NF-κB. We demonstrate that TNFα-induced NF-κB activation is severely diminished in the absence of both c-IAP proteins. In addition, combined absence of c-IAP1 and c-IAP2 rendered cells sensitive to TNFα-induced cell death. Using cells with genetic ablation of c-IAP1 or cells where the c-IAP proteins were eliminated using IAP antagonists, we show that TNFα-induced RIP1 ubiquitination is abrogated in the absence of c-IAPs. Furthermore, we reconstitute the ubiquitination process with purified components in vitro and demonstrate that c-IAP1, in collaboration with the ubiquitin conjugating enzyme (E2) enzyme UbcH5a, mediates polymerization of Lys-63-linked chains on RIP1. Therefore, c-IAP1 and c-IAP2 are required for TNFα-stimulated RIP1 ubiquitination and NF-κB activation.


Nature Reviews Molecular Cell Biology | 2011

Ubiquitylation in apoptosis: a post-translational modification at the edge of life and death

Domagoj Vucic; Vishva M. Dixit; Ingrid E. Wertz

The proper regulation of apoptosis is essential for the survival of multicellular organisms. Furthermore, excessive apoptosis can contribute to neurodegenerative diseases, anaemia and graft rejection, and diminished apoptosis can lead to autoimmune diseases and cancer. It has become clear that the post-translational modification of apoptotic proteins by ubiquitylation regulates key components in cell death signalling cascades. For example, ubiquitin E3 ligases, such as MDM2 (which ubiquitylates p53) and inhibitor of apoptosis (IAP) proteins, and deubiquitinases, such as A20 and ubiquitin-specific protease 9X (USP9X) (which regulate the ubiquitylation and degradation of receptor-interacting protein 1 (RIP1) and myeloid leukaemia cell differentiation 1 (MCL1), respectively), have important roles in apoptosis. Therapeutic agents that target apoptotic regulatory proteins, including those that are part of the ubiquitin–proteasome system, might afford clinical benefits.


Science | 2014

Activity of Protein Kinase RIPK3 Determines Whether Cells Die by Necroptosis or Apoptosis

Kim Newton; Debra L. Dugger; Katherine E. Wickliffe; Neeraj Kapoor; M. Cristina de Almagro; Domagoj Vucic; Laszlo Komuves; Ronald E. Ferrando; Dorothy French; Joshua D. Webster; Merone Roose-Girma; Søren Warming; Vishva M. Dixit

Life and Cell Death Trying to protect animals from one form of cell death may lead to death by another. Two protein kinases, known as RIPK1 and RIPK3 promote signaling that leads to cell death by necroptosis. However, Newton et al. (p. 1357, published online 20 February; see the Perspective by Zhang and Chan) found that inhibition of RIPK3 was not always beneficial. Instead, mice expressing a form of RIPK3 with no catalytic activity died from increased apoptotic cell death, but animals lacking the RIPK3 protein entirely, did not die perhaps because RIPK3 restrains apoptosis mediated by caspase-8 by an independent mechanism. A particular protein kinase functions at a critical control point that determines whether—and how—cells die. [Also see Perspective by Zhang and Chan] Receptor-interacting protein kinase 1 (RIPK1) and RIPK3 trigger pro-inflammatory cell death termed “necroptosis.” Studies with RIPK3-deficient mice or the RIPK1 inhibitor necrostatin-1 suggest that necroptosis exacerbates pathology in many disease models. We engineered mice expressing catalytically inactive RIPK3 D161N or RIPK1 D138N to determine the need for the active kinase in the whole animal. Unexpectedly, RIPK3 D161N promoted lethal RIPK1- and caspase-8–dependent apoptosis. In contrast, mice expressing RIPK1 D138N were viable and, like RIPK3-deficient mice, resistant to tumor necrosis factor (TNF)–induced hypothermia. Cells expressing RIPK1 D138N were resistant to TNF-induced necroptosis, whereas TNF-induced signaling pathways promoting gene transcription were unperturbed. Our data indicate that the kinase activity of RIPK3 is essential for necroptosis but also governs whether a cell activates caspase-8 and dies by apoptosis.


The EMBO Journal | 2010

c‐IAP1 and UbcH5 promote K11‐linked polyubiquitination of RIP1 in TNF signalling

Jasmin N. Dynek; Tatiana Goncharov; Erin C. Dueber; Anna V. Fedorova; Anita Izrael-Tomasevic; Lilian Phu; Elizabeth Helgason; Wayne J. Fairbrother; Kurt Deshayes; Donald S. Kirkpatrick; Domagoj Vucic

Ubiquitin ligases are critical components of the ubiquitination process that determine substrate specificity and, in collaboration with E2 ubiquitin‐conjugating enzymes, regulate the nature of polyubiquitin chains assembled on their substrates. Cellular inhibitor of apoptosis (c‐IAP1 and c‐IAP2) proteins are recruited to TNFR1‐associated signalling complexes where they regulate receptor‐stimulated NF‐κB activation through their RING domain ubiquitin ligase activity. Using a directed yeast two‐hybrid screen, we found several novel and previously identified E2 partners of IAP RING domains. Among these, the UbcH5 family of E2 enzymes are critical regulators of the stability of c‐IAP1 protein following destabilizing stimuli such as TWEAK or CD40 signalling or IAP antagonists. We demonstrate that c‐IAP1 and UbcH5 family promote K11‐linked polyubiquitination of receptor‐interacting protein 1 (RIP1) in vitro and in vivo. We further show that TNFα‐stimulated NF‐κB activation involves endogenous K11‐linked ubiquitination of RIP1 within the TNFR1 signalling complex that is c‐IAP1 and UbcH5 dependent. Lastly, NF‐κB essential modifier efficiently binds K11‐linked ubiquitin chains, suggesting that this ubiquitin linkage may have a signalling role in the activation of proliferative cellular pathways.


Cell Death & Differentiation | 2011

cIAP1 and TAK1 protect cells from TNF-induced necrosis by preventing RIP1/RIP3-dependent reactive oxygen species production

Nele Vanlangenakker; T Vanden Berghe; Pieter Bogaert; Bram Laukens; Kerry Zobel; Kurt Deshayes; Domagoj Vucic; Simone Fulda; Peter Vandenabeele; Mathieu J.M. Bertrand

Three members of the IAP family (X-linked inhibitor of apoptosis (XIAP), cellular inhibitor of apoptosis proteins-1/-2 (cIAP1 and cIAP2)) are potent suppressors of apoptosis. Recent studies have shown that cIAP1 and cIAP2, unlike XIAP, are not direct caspase inhibitors, but block apoptosis by functioning as E3 ligases for effector caspases and receptor-interacting protein 1 (RIP1). cIAP-mediated polyubiquitination of RIP1 allows it to bind to the pro-survival kinase transforming growth factor-β-activated kinase 1 (TAK1) which prevents it from activating caspase-8-dependent death, a process reverted by the de-ubiquitinase CYLD. RIP1 is also a regulator of necrosis, a caspase-independent type of cell death. Here, we show that cells depleted of the IAPs by treatment with the IAP antagonist BV6 are greatly sensitized to tumor necrosis factor (TNF)-induced necrosis, but not to necrotic death induced by anti-Fas, poly(I:C) oxidative stress. Specific targeting of the IAPs by RNAi revealed that repression of cIAP1 is responsible for the sensitization. Similarly, lowering TAK1 levels or inhibiting its kinase activity sensitized cells to TNF-induced necrosis, whereas repressing CYLD had the opposite effect. We show that this sensitization to death is accompanied by enhanced RIP1 kinase activity, increased recruitment of RIP1 to Fas-associated via death domain and RIP3 (which allows necrosome formation), and elevated RIP1 kinase-dependent accumulation of reactive oxygen species (ROS). In conclusion, our data indicate that cIAP1 and TAK1 protect cells from TNF-induced necrosis by preventing RIP1/RIP3-dependent ROS production.

Collaboration


Dive into the Domagoj Vucic's collaboration.

Researchain Logo
Decentralizing Knowledge