Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Domenico Alvaro is active.

Publication


Featured researches published by Domenico Alvaro.


Nature Genetics | 2010

Genome-wide meta-analyses identify three loci associated with primary biliary cirrhosis

Xiangdong Liu; Pietro Invernizzi; Yue Lu; Roman Kosoy; Yan Lu; Ilaria Bianchi; Mauro Podda; Chun Xu; Gang Xie; Fabio Macciardi; Carlo Selmi; Sara Lupoli; Russell Shigeta; Michael Ransom; Ana Lleo; Annette Lee; Andrew L. Mason; Robert P. Myers; Kevork M. Peltekian; Cameron N. Ghent; Francesca Bernuzzi; Massimo Zuin; Floriano Rosina; Elisabetta Borghesio; Annarosa Floreani; Roberta Delasta Lazzari; G. Niro; Angelo Andriulli; Luigi Muratori; Paolo Muratori

A genome-wide association screen for primary biliary cirrhosis risk alleles was performed in an Italian cohort. The results from the Italian cohort replicated IL12A and IL12RB associations, and a combined meta-analysis using a Canadian dataset identified newly associated loci at SPIB (P = 7.9 × 10−11, odds ratio (OR) = 1.46), IRF5-TNPO3 (P = 2.8 × 10−10, OR = 1.63) and 17q12-21 (P = 1.7 × 10−10, OR = 1.38).


Hepatology | 2011

Human hepatic stem cell and maturational liver lineage biology.

Rachael Turner; Oswaldo Lozoya; Yunfang Wang; Vincenzo Cardinale; Eugenio Gaudio; Gianfranco Alpini; Gemma Mendel; Eliane Wauthier; Claire Barbier; Domenico Alvaro; Lola M. Reid

Livers are comprised of maturational lineages of cells beginning extrahepatically in the hepato‐pancreatic common duct near the duodenum and intrahepatically in zone 1 by the portal triads. The extrahepatic stem cell niches are the peribiliary glands deep within the walls of the bile ducts; those intrahepatically are the canals of Hering in postnatal livers and that derive from ductal plates in fetal livers. Intrahepatically, there are at least eight maturational lineage stages from the stem cells in zone 1 (periportal), through the midacinar region (zone 2), to the most mature cells and apoptotic cells found pericentrally in zone 3. Those found in the biliary tree are still being defined. Parenchymal cells are closely associated with lineages of mesenchymal cells, and their maturation is coordinated. Each lineage stage consists of parenchymal and mesenchymal cell partners distinguishable by their morphology, ploidy, antigens, biochemical traits, gene expression, and ability to divide. They are governed by changes in chromatin (e.g., methylation), gradients of paracrine signals (soluble factors and insoluble extracellular matrix components), mechanical forces, and feedback loop signals derived from late lineage cells. Feedback loop signals, secreted by late lineage stage cells into bile, flow back to the periportal area and regulate the stem cells and other early lineage stage cells in mechanisms dictating the size of the liver mass. Recognition of maturational lineage biology and its regulation by these multiple mechanisms offers new understandings of liver biology, pathologies, and strategies for regenerative medicine and treatment of liver cancers. (HEPATOLOGY 2011;)


Hepatology | 2011

Multipotent stem/progenitor cells in human biliary tree give rise to hepatocytes, cholangiocytes, and pancreatic islets

Vincenzo Cardinale; Yunfang Wang; Guido Carpino; Cai Bin Cui; Manuela Gatto; M. Rossi; Pasquale Berloco; Alfredo Cantafora; Eliane Wauthier; Mark E. Furth; Luca Inverardi; Juan Domínguez-Bendala; Camillo Ricordi; David A. Gerber; Eugenio Gaudio; Domenico Alvaro; Lola M. Reid

Multipotent stem/progenitors are present in peribiliary glands of extrahepatic biliary trees from humans of all ages and in high numbers in hepato‐pancreatic common duct, cystic duct, and hilum. They express endodermal transcription factors (e.g., Sox9, SOX17, FOXA2, PDX1, HES1, NGN3, PROX1) intranuclearly, stem/progenitor surface markers (EpCAM, NCAM, CD133, CXCR4), and sometimes weakly adult liver, bile duct, and pancreatic genes (albumin, cystic fibrosis transmembrane conductance regulator [CFTR], and insulin). They clonogenically expand on plastic and in serum‐free medium, tailored for endodermal progenitors, remaining phenotypically stable as undifferentiated cells for months with a cell division initially every ≈36 hours and slowing to one every 2‐3 days. Transfer into distinct culture conditions, each comprised of a specific mix of hormones and matrix components, yields either cords of hepatocytes (express albumin, CYP3A4, and transferrin), branching ducts of cholangiocytes (expressing anion exchanger‐2‐AE2 and CFTR), or regulatable C‐peptide secreting neoislet‐like clusters (expressing glucagon, insulin) and accompanied by changes in gene expression correlating with the adult fate. Transplantation into quiescent livers of immunocompromised mice results in functional human hepatocytes and cholangiocytes, whereas if into fat pads of streptozocin‐induced diabetic mice, results in functional islets secreting glucose‐regulatable human C‐peptide. Conclusion: The phenotypes and availability from all age donors suggest that these stem/progenitors have considerable potential for regenerative therapies of liver, bile duct, and pancreatic diseases including diabetes. (HEPATOLOGY2011;)


Hepatology | 2011

Lineage Restriction of Human Hepatic Stem Cells to Mature Fates Is Made Efficient by Tissue-Specific Biomatrix Scaffolds

Yunfang Wang; Cai Bin Cui; Mitsuo Yamauchi; Patricia A. Miguez; Marsha Lynn Roach; Richard Harold Malavarca; M. Joseph Costello; Vincenzo Cardinale; Eliane Wauthier; Claire Barbier; David A. Gerber; Domenico Alvaro; Lola M. Reid

Current protocols for differentiation of stem cells make use of multiple treatments of soluble signals and/or matrix factors and result typically in partial differentiation to mature cells with under‐ or overexpression of adult tissue‐specific genes. We developed a strategy for rapid and efficient differentiation of stem cells using substrata of biomatrix scaffolds, tissue‐specific extracts enriched in extracellular matrix, and associated growth factors and cytokines, in combination with a serum‐free, hormonally defined medium (HDM) tailored for the adult cell type of interest. Biomatrix scaffolds were prepared by a novel, four‐step perfusion decellularization protocol using conditions designed to keep all collagen types insoluble. The scaffolds maintained native histology, patent vasculatures, and ≈1% of the tissues proteins but >95% of its collagens, most of the tissues collagen‐associated matrix components, and physiological levels of matrix‐bound growth factors and cytokines. Collagens increased from almost undetectable levels to >15% of the scaffolds proteins with the remainder including laminins, fibronectins, elastin, nidogen/entactin, proteoglycans, and matrix‐bound cytokines and growth factors in patterns that correlate with histology. Human hepatic stem cells (hHpSCs), seeded onto liver biomatrix scaffolds and in an HDM tailored for adult liver cells, lost stem cell markers and differentiated to mature, functional parenchymal cells in ≈1 week, remaining viable and with stable mature cell phenotypes for more than 8 weeks. Conclusion: Biomatrix scaffolds can be used for biological and pharmaceutical studies of lineage‐restricted stem cells, for maintenance of mature cells, and, in the future, for implantable, vascularized engineered tissues or organs. (HEPATOLOGY 2011.)


Digestive and Liver Disease | 2010

Cholangiocarcinoma: Update and future perspectives

Manuela Gatto; Maria Consiglia Bragazzi; R. Semeraro; Cristina Napoli; R. Gentile; A. Torrice; Eugenio Gaudio; Domenico Alvaro

Cholangiocarcinoma is commonly considered a rare cancer. However, if we consider the hepato-biliary system a single entity, cancers of the gallbladder, intra-hepatic and extra-hepatic biliary tree altogether represent approximately 30% of the total with incidence rates close to that of hepatocellular carcinoma, which is the third most common cause of cancer-related death worldwide. In addition, cholangiocarcinoma is characterized by a very poor prognosis and virtually no response to chemotherapeutics; radical surgery, the only effective treatment, is not frequently applicable because late diagnosis. Biomarkers for screening programs and for follow-up of categories at risk are under investigation, however, currently none of the proposed markers has reached clinical application. For all these considerations, cancers of the biliary tree system should merit much more scientific attention also because a progressive increase in incidence and mortality for these cancers has been reported worldwide. This manuscript deals with the most recent advances in the epidemiology, biology and clinical presentation of cholangiocarcinoma.


Nature Reviews Gastroenterology & Hepatology | 2012

The biliary tree-a reservoir of multipotent stem cells

Vincenzo Cardinale; Yunfang Wang; Guido Carpino; Gemma Mendel; Gianfranco Alpini; Eugenio Gaudio; Lola M. Reid; Domenico Alvaro

The biliary tree is composed of intrahepatic and extrahepatic bile ducts, lined by mature epithelial cells called cholangiocytes, and contains peribiliary glands deep within the duct walls. Branch points, such as the cystic duct, perihilar and periampullar regions, contain high numbers of these glands. Peribiliary glands contain multipotent stem cells, which self-replicate and can differentiate into hepatocytes, cholangiocytes or pancreatic islets, depending on the microenvironment. Similar cells—presumably committed progenitor cells—are found in the gallbladder (which lacks peribiliary glands). The stem and progenitor cell characteristics indicate a common embryological origin for the liver, biliary tree and pancreas, which has implications for regenerative medicine as well as the pathophysiology and oncogenesis of midgut organs. This Perspectives article describes a hypothetical model of cell lineages starting in the duodenum and extending to the liver and pancreas, and thought to contribute to ongoing organogenesis throughout life.


Journal of Anatomy | 2012

Biliary tree stem/progenitor cells in glands of extrahepatic and intraheptic bile ducts: an anatomical in situ study yielding evidence of maturational lineages

Guido Carpino; Vincenzo Cardinale; Paolo Onori; Antonio Franchitto; Pasquale Berloco; M. Rossi; Yunfang Wang; R. Semeraro; Maurizio M. Anceschi; Roberto Brunelli; Domenico Alvaro; Lola M. Reid; Eugenio Gaudio

Stem/progenitors have been identified intrahepatically in the canals of Hering and extrahepatically in glands of the biliary tree. Glands of the biliary tree (peribiliary glands) are tubulo‐alveolar glands with mucinous and serous acini, located deep within intrahepatic and extrahepatic bile ducts. We have shown that biliary tree stem/progenitors (BTSCs) are multipotent, giving rise in vitro and in vivo to hepatocytes, cholangiocytes or pancreatic islets. Cells with the phenotype of BTSCs are located at the bottom of the peribiliary glands near the fibromuscular layer. They are phenotypically heterogeneous, expressing transcription factors as well as surface and cytoplasmic markers for stem/progenitors of liver (e.g. SOX9/17), pancreas (e.g. PDX1) and endoderm (e.g. SOX17, EpCAM, NCAM, CXCR4, Lgr5, OCT4) but not for mature markers (e.g. albumin, secretin receptor or insulin). Subpopulations co‐expressing liver and pancreatic markers (e.g. PDX1+/SOX17+) are EpCAM+/−, and are assumed to be the most primitive of the BTSC subpopulations. Their descendants undergo a maturational lineage process from the interior to the surface of ducts and vary in the mature cells generated: pancreatic cells in hepatopancreatic ducts, liver cells in large intrahepatic bile ducts, and bile duct cells along most of the biliary tree. We hypothesize that there is ongoing organogenesis throughout life, with BTSCs giving rise to hepatic stem cells in the canals of Hering and to committed progenitors within the pancreas. The BTSCs are likely to be central to normal tissue turnover and injury repair and to be key elements in the pathophysiology of liver, pancreas and biliary tree diseases, including oncogenesis.


Expert Reviews in Molecular Medicine | 2009

Cholangiocyte proliferation and liver fibrosis

Shannon Glaser; Eugenio Gaudio; Timothy D. Miller; Domenico Alvaro; Gianfranco Alpini

Cholangiocyte proliferation is triggered during extrahepatic bile duct obstruction induced by bile duct ligation, which is a common in vivo model used for the study of cholangiocyte proliferation and liver fibrosis. The proliferative response of cholangiocytes during cholestasis is regulated by the complex interaction of several factors, including gastrointestinal hormones, neuroendocrine hormones and autocrine or paracrine signalling mechanisms. Activation of biliary proliferation (ductular reaction) is thought to have a key role in the initiation and progression of liver fibrosis. The first part of this review provides an overview of the primary functions of cholangiocytes in terms of secretin-stimulated bicarbonate secretion--a functional index of cholangiocyte growth. In the second section, we explore the important regulators, both inhibitory and stimulatory, that regulate the cholangiocyte proliferative response during cholestasis. We discuss the role of proliferating cholangiocytes in the induction of fibrosis either directly via epithelial mesenchymal transition or indirectly via the activation of other liver cell types. The possibility of targeting cholangiocyte proliferation as potential therapy for reducing and/or preventing liver fibrosis, and future avenues for research into how cholangiocytes participate in the process of liver fibrogenesis are described.


Nature Reviews Gastroenterology & Hepatology | 2016

Expert consensus document: Cholangiocarcinoma: current knowledge and future perspectives consensus statement from the European Network for the Study of Cholangiocarcinoma (ENS-CCA)

Jesus M. Banales; Vincenzo Cardinale; Guido Carpino; Marco Marzioni; Jesper B. Andersen; Pietro Invernizzi; Guro E. Lind; Trine Folseraas; Stuart J. Forbes; Laura Fouassier; Andreas Geier; Diego F. Calvisi; Joachim C. Mertens; Michael Trauner; Antonio Benedetti; Luca Maroni; Javier Vaquero; Rocio I.R. Macias; Chiara Raggi; M.J. Perugorria; Eugenio Gaudio; Kirsten Muri Boberg; Jose J.G. Marin; Domenico Alvaro

Cholangiocarcinoma (CCA) is a heterogeneous group of malignancies with features of biliary tract differentiation. CCA is the second most common primary liver tumour and the incidence is increasing worldwide. CCA has high mortality owing to its aggressiveness, late diagnosis and refractory nature. In May 2015, the “European Network for the Study of Cholangiocarcinoma” (ENS-CCA: www.enscca.org or www.cholangiocarcinoma.eu) was created to promote and boost international research collaboration on the study of CCA at basic, translational and clinical level. In this Consensus Statement, we aim to provide valuable information on classifications, pathological features, risk factors, cells of origin, genetic and epigenetic modifications and current therapies available for this cancer. Moreover, future directions on basic and clinical investigations and plans for the ENS-CCA are highlighted.


Hepatology | 2008

Human leukocyte antigen polymorphisms in Italian primary biliary cirrhosis: a multicenter study of 664 patients and 1992 healthy controls

Pietro Invernizzi; Carlo Selmi; Francesca Poli; S. Frison; Annarosa Floreani; Domenico Alvaro; Piero Luigi Almasio; Floriano Rosina; Marco Marzioni; Luca Fabris; Luigi Muratori; Lihong Qi; Michael F. Seldin; M. Eric Gershwin; Mauro Podda

Genetic factors are critical in determining susceptibility to primary biliary cirrhosis (PBC), but there has not been a clear association with human leukocyte antigen (HLA) genes. We performed a multicenter case‐control study and analyzed HLA class II DRB1 associations using a large cohort of 664 well‐defined cases of PBC and 1992 controls of Italian ancestry. Importantly, healthy controls were rigorously matched not only by age and sex, but also for the geographical origin of the proband four grandparents (Northern, Central, and Southern Italy). After correction for multiple testing, DRB1*08 [odds ratio (OR), 3.3; 95% confidence interval (CI), 2.4‐4.5] and DRB1*02 (OR 0.9; 95% CI 0.8‐1.2) were significantly associated with PBC, whereas alleles DRB1*11 (OR 0.4; 95% CI 0.3‐0.4) and DRB1*13 (OR 0.7; 95% CI 0.6‐0.9) were protective. When subjects were stratified according to their grandparental geographical origin, only the associations with DRB1*08 and DRB1*11 were common to all three areas. Associated DRB1 alleles were found only in a minority of patients, whereas an additive genetic model is supported by the gene dosage effect for DRB1*11 allele and the interaction of DRB1*11,*13, and *08. Lastly, no significant associations were detected between specific DRB1 alleles and relevant clinical features represented by the presence of cirrhosis or serum autoantibodies. In conclusion, we confirm the role for HLA to determine PBC susceptibility and suggest that the effect of HLA is limited to patient subgroups. We suggest that a large whole‐genome approach is required to identify further genetic elements contributing to the loss of tolerance in this disease. (HEPATOLOGY 2008;48:1906‐1912.)

Collaboration


Dive into the Domenico Alvaro's collaboration.

Top Co-Authors

Avatar

Eugenio Gaudio

American Board of Legal Medicine

View shared research outputs
Top Co-Authors

Avatar

Guido Carpino

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Paolo Onori

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Antonio Franchitto

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Vincenzo Cardinale

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Marco Marzioni

Marche Polytechnic University

View shared research outputs
Top Co-Authors

Avatar

Antonio Benedetti

Marche Polytechnic University

View shared research outputs
Researchain Logo
Decentralizing Knowledge