Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Domenico Catalano is active.

Publication


Featured researches published by Domenico Catalano.


BMC Bioinformatics | 2007

p53FamTaG: a database resource of human p53, p63 and p73 direct target genes combining in silico prediction and microarray data

Elisabetta Sbisà; Domenico Catalano; Giorgio Grillo; Flavio Licciulli; Antonio Turi; Sabino Liuni; Anna De Grassi; Mariano Francesco Caratozzolo; Anna Maria D'Erchia; Beatriz Navarro; Apollonia Tullo; Cecilia Saccone; Andreas Gisel

BackgroundThe p53 gene family consists of the three genes p53, p63 and p73, which have polyhedral non-overlapping functions in pivotal cellular processes such as DNA synthesis and repair, growth arrest, apoptosis, genome stability, angiogenesis, development and differentiation. These genes encode sequence-specific nuclear transcription factors that recognise the same responsive element (RE) in their target genes. Their inactivation or aberrant expression may determine tumour progression or developmental disease. The discovery of several protein isoforms with antagonistic roles, which are produced by the expression of different promoters and alternative splicing, widened the complexity of the scenario of the transcriptional network of the p53 family members. Therefore, the identification of the genes transactivated by p53 family members is crucial to understand the specific role for each gene in cell cycle regulation. We have combined a genome-wide computational search of p53 family REs and microarray analysis to identify new direct target genes. The huge amount of biological data produced has generated a critical need for bioinformatic tools able to manage and integrate such data and facilitate their retrieval and analysis.DescriptionWe have developed the p53FamTaG database (p53 FAMily TArget Genes), a modular relational database, which contains p53 family direct target genes selected in the human genome searching for the presence of the REs and the expression profile of these target genes obtained by microarray experiments. p53FamTaG database also contains annotations of publicly available databases and links to other experimental data.The genome-wide computational search of the REs was performed using PatSearch, a pattern-matching program implemented in the DNAfan tool. These data were integrated with the microarray results we produced from the overexpression of different isoforms of p53, p63 and p73 stably transfected in isogenic cell lines, allowing the comparative study of the transcriptional activity of all the proteins in the same cellular background.p53FamTaG database is available free at http://www2.ba.itb.cnr.it/p53FamTaG/Conclusionp53FamTaG represents a unique integrated resource of human direct p53 family target genes that is extensively annotated and provides the users with an efficient query/retrieval system which displays the results of our microarray experiments and allows the export of RE sequences. The database was developed for supporting and integrating high-throughput in silico and experimental analyses and represents an important reference source of knowledge for research groups involved in the field of oncogenesis, apoptosis and cell cycle regulation.


Nucleic Acids Research | 2003

MitoDrome: a database of Drosophila melanogaster nuclear genes encoding proteins targeted to the mitochondrion.

Marco Sardiello; Flavio Licciulli; Domenico Catalano; Marcella Attimonelli; Corrado Caggese

Mitochondria are organelles present in the cytoplasm of most eukaryotic cells; although they have their own DNA, the majority of the proteins necessary for a functional mitochondrion are coded by the nuclear DNA and only after transcription and translation they are imported in the mitochondrion as proteins. The primary role of the mitochondrion is electron transport and oxidative phosphorylation. Although it has been studied for a long time, the interest of researchers in mitochondria is still alive thanks to the discovery of mitochondrial role in apoptosis, aging and cancer. Aim of the MitoDrome database is to annotate the Drosophila melanogaster nuclear genes coding for mitochondrial proteins in order to contribute to the functional characterization of nuclear genes coding for mitochondrial proteins and to knowledge of gene diseases related to mitochondrial dysfunctions. Indeed D. melanogaster is one of the most studied organisms and a model for the Human genome. Data are derived from the comparison of Human mitochondrial proteins versus the Drosophila genome, ESTs and cDNA sequence data available in the FlyBase database. Links from the MitoDrome entries to the related homologous entries available in MitoNuC will be soon imple-mented. The MitoDrome database is available at http://bighost.area.ba.cnr.it/BIG/MitoDrome. Data are organised in a flat-file format and can be retrieved using the SRS system.


BMC Genomics | 2014

Characterization of the MLO gene family in Rosaceae and gene expression analysis in Malus domestica

Stefano Pessina; Stefano Pavan; Domenico Catalano; Alessandra Gallotta; Richard G. F. Visser; Yuling Bai; Mickael Malnoy; Henk J. Schouten

BackgroundPowdery mildew (PM) is a major fungal disease of thousands of plant species, including many cultivated Rosaceae. PM pathogenesis is associated with up-regulation of MLO genes during early stages of infection, causing down-regulation of plant defense pathways. Specific members of the MLO gene family act as PM-susceptibility genes, as their loss-of-function mutations grant durable and broad-spectrum resistance.ResultsWe carried out a genome-wide characterization of the MLO gene family in apple, peach and strawberry, and we isolated apricot MLO homologs through a PCR-approach. Evolutionary relationships between MLO homologs were studied and syntenic blocks constructed. Homologs that are candidates for being PM susceptibility genes were inferred by phylogenetic relationships with functionally characterized MLO genes and, in apple, by monitoring their expression following inoculation with the PM causal pathogen Podosphaera leucotricha.ConclusionsGenomic tools available for Rosaceae were exploited in order to characterize the MLO gene family. Candidate MLO susceptibility genes were identified. In follow-up studies it can be investigated whether silencing or a loss-of-function mutations in one or more of these candidate genes leads to PM resistance.


Transgenic Research | 2015

Identification of candidate MLO powdery mildew susceptibility genes in cultivated Solanaceae and functional characterization of tobacco NtMLO1

Michela Appiano; Stefano Pavan; Domenico Catalano; Zheng Zheng; Valentina Bracuto; Concetta Lotti; Richard G. F. Visser; Luigi Ricciardi; Yuling Bai

Specific homologs of the plant Mildew Locus O (MLO) gene family act as susceptibility factors towards the powdery mildew (PM) fungal disease, causing significant economic losses in agricultural settings. Thus, in order to obtain PM resistant phenotypes, a general breeding strategy has been proposed, based on the selective inactivation of MLO susceptibility genes across cultivated species. In this study, PCR-based methodologies were used in order to isolate MLO genes from cultivated solanaceous crops that are hosts for PM fungi, namely eggplant, potato and tobacco, which were named SmMLO1, StMLO1 and NtMLO1, respectively. Based on phylogenetic analysis and sequence alignment, these genes were predicted to be orthologs of tomato SlMLO1 and pepper CaMLO2, previously shown to be required for PM pathogenesis. Full-length sequence of the tobacco homolog NtMLO1 was used for a heterologous transgenic complementation assay, resulting in its characterization as a PM susceptibility gene. The same assay showed that a single nucleotide change in a mutated NtMLO1 allele leads to complete gene loss-of-function. Results here presented, also including a complete overview of the tobacco and potato MLO gene families, are valuable to study MLO gene evolution in Solanaceae and for molecular breeding approaches aimed at introducing PM resistance using strategies of reverse genetics.


Bioinformatics | 2007

Statistical assessment of functional categories of genes deregulated in pathological conditions by using microarray data

Rosalia Maglietta; Ada Piepoli; Domenico Catalano; Flavio Licciulli; Massimo Carella; Sabino Liuni; Francesco Perri; Nicola Ancona

MOTIVATION A major challenge in current biomedical research is the identification of cellular processes deregulated in a given pathology through the analysis of gene expression profiles. To this end, predefined lists of genes, coding specific functions, are compared with a list of genes ordered according to their values of differential expression measured by suitable univariate statistics. RESULTS We propose a statistically well-founded method for measuring the relevance of predefined lists of genes and for assessing their statistical significance starting from their raw expression levels as recorded on the microarray. We use prediction accuracy as a measure of relevance of the list. The rationale is that a functional category, coded through a list of genes, is perturbed in a given pathology if it is possible to correctly predict the occurrence of the disease in new subjects on the basis of the expression levels of the genes belonging to the list only. The accuracy is estimated with multiple random validation strategy and its statistical significance is assessed against a couple of null hypothesis, by using two independent permutation tests. The utility of the proposed methodology is illustrated by analyzing the relevance of Gene Ontology terms belonging to biological process category in colon and prostate cancer, by using three different microarray data sets and by comparing it with current approaches. AVAILABILITY Source code for the algorithms is available from author upon request. SUPPLEMENTARY INFORMATION Colon cancer data set and a complete description of experimental results are available at: ftp://bioftp:[email protected]/supp-info.htm.


BMC Bioinformatics | 2006

MitoRes: a resource of nuclear-encoded mitochondrial genes and their products in Metazoa

Domenico Catalano; Flavio Licciulli; Antonio Turi; Giorgio Grillo; Cecilia Saccone; Domenica D'Elia

BackgroundMitochondria are sub-cellular organelles that have a central role in energy production and in other metabolic pathways of all eukaryotic respiring cells. In the last few years, with more and more genomes being sequenced, a huge amount of data has been generated providing an unprecedented opportunity to use the comparative analysis approach in studies of evolution and functional genomics with the aim of shedding light on molecular mechanisms regulating mitochondrial biogenesis and metabolism.In this context, the problem of the optimal extraction of representative datasets of genomic and proteomic data assumes a crucial importance. Specialised resources for nuclear-encoded mitochondria-related proteins already exist; however, no mitochondrial database is currently available with the same features of MitoRes, which is an update of the MitoNuc database extensively modified in its structure, data sources and graphical interface. It contains data on nuclear-encoded mitochondria-related products for any metazoan species for which this type of data is available and also provides comprehensive sequence datasets (gene, transcript and protein) as well as useful tools for their extraction and export.DescriptionMitoRes http://www2.ba.itb.cnr.it/MitoRes/ consolidates information from publicly external sources and automatically annotates them into a relational database. Additionally, it also clusters proteins on the basis of their sequence similarity and interconnects them with genomic data. The search engine and sequence management tools allow the query/retrieval of the database content and the extraction and export of sequences (gene, transcript, protein) and related sub-sequences (intron, exon, UTR, CDS, signal peptide and gene flanking regions) ready to be used for in silico analysis.ConclusionThe tool we describe here has been developed to support lab scientists and bioinformaticians alike in the characterization of molecular features and evolution of mitochondrial targeting sequences. The way it provides for the retrieval and extraction of sequences allows the user to overcome the obstacles encountered in the integrative use of different bioinformatic resources and the completeness of the sequence collection allows intra- and interspecies comparison at different biological levels (gene, transcript and protein).


BMC Genomics | 2015

Structure, evolution and functional inference on the Mildew Locus O (MLO) gene family in three cultivated Cucurbitaceae spp.

Paolo Iovieno; Giuseppe Andolfo; Adalgisa Schiavulli; Domenico Catalano; Luigi Ricciardi; Luigi Frusciante; Maria Raffaella Ercolano; Stefano Pavan

BackgroundThe powdery mildew disease affects thousands of plant species and arguably represents the major fungal threat for many Cucurbitaceae crops, including melon (Cucumis melo L.), watermelon (Citrullus lanatus L.) and zucchini (Cucurbita pepo L.). Several studies revealed that specific members of the Mildew Locus O (MLO) gene family act as powdery mildew susceptibility factors. Indeed, their inactivation, as the result of gene knock-out or knock-down, is associated with a peculiar form of resistance, referred to as mlo resistance.ResultsWe exploited recently available genomic information to provide a comprehensive overview of the MLO gene family in Cucurbitaceae. We report the identification of 16 MLO homologs in C. melo, 14 in C. lanatus and 18 in C. pepo genomes. Bioinformatic treatment of data allowed phylogenetic inference and the prediction of several ortholog pairs and groups. Comparison with functionally characterized MLO genes and, in C. lanatus, gene expression analysis, resulted in the detection of candidate powdery mildew susceptibility factors. We identified a series of conserved amino acid residues and motifs that are likely to play a major role for the function of MLO proteins. Finally, we performed a codon-based evolutionary analysis indicating a general high level of purifying selection in the three Cucurbitaceae MLO gene families, and the occurrence of regions under diversifying selection in candidate susceptibility factors.ConclusionsResults of this study may help to address further biological questions concerning the evolution and function of MLO genes. Moreover, data reported here could be conveniently used by breeding research, aiming to select powdery mildew resistant cultivars in Cucurbitaceae.


BMC Plant Biology | 2015

Monocot and dicot MLO powdery mildew susceptibility factors are functionally conserved in spite of the evolution of class-specific molecular features

Michela Appiano; Domenico Catalano; Miguel Santillán Martínez; Concetta Lotti; Zheng Zheng; Richard G. F. Visser; Luigi Ricciardi; Yuling Bai; Stefano Pavan

BackgroundSpecific members of the plant Mildew Locus O (MLO) protein family act as susceptibility factors towards powdery mildew (PM), a worldwide-spread fungal disease threatening many cultivated species. Previous studies indicated that monocot and dicot MLO susceptibility proteins are phylogenetically divergent.MethodsA bioinformatic approach was followed to study the type of evolution of Angiosperm MLO susceptibility proteins. Transgenic complementation tests were performed for functional analysis.ResultsOur results show that monocot and dicot MLO susceptibility proteins evolved class-specific conservation patterns. Many of them appear to be the result of negative selection and thus are likely to provide an adaptive value. We also tested whether different molecular features between monocot and dicot MLO proteins are specifically required by PM fungal species to cause pathogenesis. To this aim, we transformed a tomato mutant impaired for the endogenous SlMLO1 gene, and therefore resistant to the tomato PM species Oidium neolycopersici, with heterologous MLO susceptibility genes from the monocot barley and the dicot pea. In both cases, we observed restoration of PM symptoms. Finally, through histological observations, we demonstrate that both monocot and dicot susceptibility alleles of the MLO genes predispose to penetration of a non-adapted PM fungal species in plant epidermal cells.ConclusionsWith this study, we provide insights on the evolution and function of MLO genes involved in the interaction with PM fungi. With respect to breeding research, we show that transgenic complementation assays involving phylogenetically distant plant species can be used for the characterization of novel MLO susceptibility genes. Moreover, we provide an overview of MLO protein molecular features predicted to play a major role in PM susceptibility. These represent ideal targets for future approaches of reverse genetics, addressed to the selection of loss-of-function resistant mutants in cultivated species.


Nucleic Acids Research | 2002

MitoNuc: a database of nuclear genes coding for mitochondrial proteins. Update 2002

Marcella Attimonelli; Domenico Catalano; Carmela Gissi; Giorgio Grillo; Flavio Licciulli; Sabino Liuni; Monica Santamaria; Cecilia Saccone

Mitochondria, besides their central role in energy metabolism, have recently been found to be involved in a number of basic processes of cell life and to contribute to the pathogenesis of many degenerative diseases. All functions of mitochondria depend on the interaction of nuclear and organelle genomes. Mitochondrial genomes have been extensively sequenced and analysed and data have been collected in several specialised databases. In order to collect information on nuclear coded mitochondrial proteins we developed MitoNuc, a database containing detailed information on sequenced nuclear genes coding for mitochondrial proteins in Metazoa. The MitoNuc database can be retrieved through SRS and is available via the web site http://bighost.area.ba.cnr.it/mitochondriome where other mitochondrial databases developed by our group, the complete list of the sequenced mitochondrial genomes, links to other mitochondrial sites and related information, are available. The MitoAln database, related to MitoNuc in the previous release, reporting the multiple alignments of the relevant homologous protein coding regions, is no longer supported in the present release. In order to keep the links among entries in MitoNuc from homologous proteins, a new field in the database has been defined: the cluster identifier, an alpha numeric code used to identify each cluster of homologous proteins. A comment field derived from the corresponding SWISS-PROT entry has been introduced; this reports clinical data related to dysfunction of the protein. The logic scheme of MitoNuc database has been implemented in the ORACLE DBMS. This will allow the end-users to retrieve data through a friendly interface that will be soon implemented.


BMC Bioinformatics | 2012

In-silico and in-vivo analyses of EST databases unveil conserved miRNAs from Carthamus tinctorius and Cynara cardunculus

Domenico Catalano; Domenico Pignone; Gabriella Sonnante; Mariella M Finetti-Sialer

BackgroundMicroRNAs (miRNAs) are small RNAs (21-24 bp) providing an RNA-based system of gene regulation highly conserved in plants and animals. In plants, miRNAs control mRNA degradation or restrain translation, affecting development and responses to stresses. Plant miRNAs show imperfect but extensive complementarity to mRNA targets, making their computational prediction possible, useful when data mining is applied on different species. In this study we used a comparative approach to identify both miRNAs and their targets, in artichoke and safflower.ResultsTwo complete expressed sequence tags (ESTs) datasets from artichoke (3.6·104 entries) and safflower (4.2·104), were analysed with a bioinformatic pipeline and in vitro experiments, identifying 17 potential miRNAs. For each EST, using RNAhybrid program and 953 non redundant miRNA mature sequences, available in mirBase as reference, we searched matching putative targets. 8730 out of 42011 ESTs from safflower and 7145 of 36323 ESTs from artichoke showed at least one predicted miRNA target. BLAST analysis showed that 75% of all ESTs shared at least a common homologous region (E-value < 10-4) and about 50% of these displayed 400 bp or longer aligned sequences as conserved homologous/orthologous (COS) regions. 960 and 890 ESTs of safflower and artichoke organized in COS shared 79 different miRNA targets, considered functionally conserved, and statistically significant when compared with random sequences (signal to noise ratio > 2 and specificity ≥ 0.85). Four highly significant miRNAs selected from in silico data were experimentally validated in globe artichoke leaves.ConclusionsMature miRNAs and targets were predicted within EST sequences of safflower and artichoke. Most of the miRNA targets appeared highly/moderately conserved, highlighting an important and conserved function. In this study we introduce a stringent parameter for the comparative sequence analysis, represented by the identification of the same target in the COS region. After statistical analysis 79 targets, found on the COS regions and belonging to 60 miRNA families, have a signal to noise ratio > 2, with ≥ 0.85 specificity. The putative miRNAs identified belong to 55 dicotyledon plants and to 24 families only in monocotyledon.

Collaboration


Dive into the Domenico Catalano's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Giorgio Grillo

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sabino Liuni

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard G. F. Visser

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Yuling Bai

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge