Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuling Bai is active.

Publication


Featured researches published by Yuling Bai.


Annals of Botany | 2007

Domestication and breeding of tomatoes: what have we gained and what can we gain in the future?

Yuling Bai; Pim Lindhout

Background It has been shown that a large variation is present and exploitable from wild Solanum species but most of it is still untapped. Considering the thousands of Solanum accessions in different gene banks and probably even more that are still untouched in the Andes, it is a challenge to exploit the diversity of tomato. What have we gained from tomato domestication and breeding and what can we gain in the future? Scope This review summarizes progress on tomato domestication and breeding and current efforts in tomato genome research. Also, it points out potential challenges in exploiting tomato biodiversity and depicts future perspectives in tomato breeding with the emerging knowledge from tomato-omics. Conclusions From first domestication to modern breeding, the tomato has been continually subjected to human selection for a wide array of applications in both science and commerce. Current efforts in tomato breeding are focused on discovering and exploiting genes for the most important traits in tomato germplasm. In the future, breeders will design cultivars by a process named ‘breeding by design’ based on the combination of science and technologies from the genomic era as well as their practical skills.


Molecular Plant-microbe Interactions | 2008

Naturally Occurring Broad-Spectrum Powdery Mildew Resistance in a Central American Tomato Accession Is Caused by Loss of Mlo Function

Yuling Bai; Stefano Pavan; Zheng Zheng; N.F. Zappel; Anja Reinstädler; Concetta Lotti; C. de Giovanni; Luigi Ricciardi; Pim Lindhout; Richard G. F. Visser; K. Theres; Ralph Panstruga

The resistant cherry tomato (Solanum lycopersicum var. cerasiforme) line LC-95, derived from an accession collected in Ecuador, harbors a natural allele (ol-2) that confers broad-spectrum and recessively inherited resistance to powdery mildew (Oidium neolycopersici). As both the genetic and phytopathological characteristics of ol-2-mediated resistance are reminiscent of powdery mildew immunity conferred by loss-of-function mlo alleles in barley and Arabidopsis, we initiated a candidate-gene approach to clone Ol-2. A tomato Mlo gene (SlMlo1) with high sequence-relatedness to barley Mlo and Arabidopsis AtMLO2 mapped to the chromosomal region harboring the Ol-2 locus. Complementation experiments using transgenic tomato lines as well as virus-induced gene silencing assays suggested that loss of SlMlo1 function is responsible for powdery mildew resistance conferred by ol-2. In progeny of a cross between a resistant line bearing ol-2 and the susceptible tomato cultivar Moneymaker, a 19-bp deletion disrupting the SlMlo1 coding region cosegregated with resistance. This polymorphism results in a frameshift and, thus, a truncated nonfunctional SlMlo1 protein. Our findings reveal the second example of a natural mlo mutant that possibly arose post-domestication, suggesting that natural mlo alleles might be evolutionarily short-lived due to fitness costs related to loss of mlo function.


Molecular Breeding | 2010

Loss of susceptibility as a novel breeding strategy for durable and broad-spectrum resistance

Stefano Pavan; E. Jacobsen; Richard G. F. Visser; Yuling Bai

Recent studies on plant immunity have suggested that a pathogen should suppress induced plant defense in order to infect a plant species, which otherwise would have been a nonhost to the pathogen. For this purpose, pathogens exploit effector molecules to interfere with different layers of plant defense responses. In this review, we summarize the latest findings on plant factors that are activated by pathogen effectors to suppress plant immunity. By looking from a different point of view into host and nonhost resistance, we propose a novel breeding strategy: disabling plant disease susceptibility genes (S-genes) to achieve durable and broad-spectrum resistance.


PLOS Genetics | 2013

The Tomato Yellow Leaf Curl Virus resistance genes Ty-1 and Ty-3 are allelic and code for DFDGD-class RNA-dependent RNA polymerases.

Maarten G. Verlaan; Samuel F. Hutton; Ragy M. Ibrahem; Richard Kormelink; Richard G. F. Visser; John W. Scott; Jeremy Edwards; Yuling Bai

Tomato Yellow Leaf Curl Virus Disease incited by Tomato yellow leaf curl virus (TYLCV) causes huge losses in tomato production worldwide and is caused by different related begomovirus species. Breeding for TYLCV resistance has been based on the introgression of multiple resistance genes originating from several wild tomato species. In this study we have fine-mapped the widely used Solanum chilense–derived Ty-1 and Ty-3 genes by screening nearly 12,000 plants for recombination events and generating recombinant inbred lines. Multiple molecular markers were developed and used in combination with disease tests to fine-map the genes to a small genomic region (approximately 70 kb). Using a Tobacco Rattle Virus–Virus Induced Gene Silencing approach, the resistance gene was identified. It is shown that Ty-1 and Ty-3 are allelic and that they code for a RNA–dependent RNA polymerase (RDR) belonging to the RDRγ type, which has an atypical DFDGD motif in the catalytic domain. In contrast to the RDRα type, characterized by a catalytic DLDGD motif, no clear function has yet been described for the RDRγ type, and thus the Ty-1/Ty-3 gene unveils a completely new class of resistance gene. Although speculative, the resistance mechanism of Ty-1/Ty-3 and its specificity towards TYLCV are discussed in light of the function of the related RDRα class in the amplification of the RNAi response in plants and transcriptional silencing of geminiviruses in plants.


Molecular Plant-microbe Interactions | 2003

QTLs for tomato powdery mildew resistance (Oidium lycopersici) in Lycopersicon parviflorum G1.1601 co-localize with two qualitative powdery mildew resistance genes.

Yuling Bai; Cai-Cheng Huang; Ron van der Hulst; Fien Meijer-Dekens; Guusje Bonnema; Pim Lindhout

Tomato (Lycopersicon esculentum) is susceptible to the powdery mildew Oidium lycopersici, but several wild relatives such as Lycopersicon parviflorum G1.1601 are completely resistant. An F2 population from a cross of Lycopersicon esculentum cv. Moneymaker x Lycopersicon parviflorum G1.1601 was used to map the O. lycopersici resistance by using amplified fragment length polymorphism markers. The resistance was controlled by three quantitative trait loci (QTLs). Ol-qtl1 is on chromosome 6 in the same region as the Ol-1 locus, which is involved in a hypersensitive resistance response to O. lycopersici. Ol-qtl2 and Ol-qtl3 are located on chromosome 12, separated by 25 cM, in the vicinity of the Lv locus conferring resistance to another powdery mildew species, Leveillula taurica. The three QTLs, jointly explaining 68% of the phenotypic variation, were confirmed by testing F3 progenies. A set of polymerase chain reaction-based cleaved amplified polymorphic sequence and sequence characterized amplified region markers was generated for efficient monitoring of the target QTL genomic regions in marker assisted selection. The possible relationship between genes underlying major and partial resistance for tomato powdery mildew is discussed.


Plant Journal | 2010

Identification of tomato phosphatidylinositol-specific phospholipase-C (PI-PLC) family members and the role of PLC4 and PLC6 in HR and disease resistance.

Jack H. Vossen; Ahmed Abd-El-Haliem; Emilie F. Fradin; Grardy C. M. van den Berg; Sophia K. Ekengren; Harold J. G. Meijer; Alireza Seifi; Yuling Bai; Arjen ten Have; Teun Munnik; Bart P. H. J. Thomma; Matthieu H. A. J. Joosten

The perception of pathogen-derived elicitors by plants has been suggested to involve phosphatidylinositol-specific phospholipase-C (PI-PLC) signalling. Here we show that PLC isoforms are required for the hypersensitive response (HR) and disease resistance. We characterised the tomato [Solanum lycopersicum (Sl)] PLC gene family. Six Sl PLC-encoding cDNAs were isolated and their expression in response to infection with the pathogenic fungus Cladosporium fulvum was studied. We found significant regulation at the transcriptional level of the various SlPLCs, and SlPLC4 and SlPLC6 showed distinct expression patterns in C. fulvum-resistant Cf-4 tomato. We produced the encoded proteins in Escherichia coli and found that both genes encode catalytically active PI-PLCs. To test the requirement of these Sl PLCs for full Cf-4-mediated recognition of the effector Avr4, we knocked down the expression of the encoding genes by virus-induced gene silencing. Silencing of SlPLC4 impaired the Avr4/Cf-4-induced HR and resulted in increased colonisation of Cf-4 plants by C. fulvum expressing Avr4. Furthermore, expression of the gene in Nicotiana benthamiana enhanced the Avr4/Cf-4-induced HR. Silencing of SlPLC6 did not affect HR, whereas it caused increased colonisation of Cf-4 plants by the fungus. Interestingly, Sl PLC6, but not Sl PLC4, was also required for resistance to Verticillium dahliae, mediated by the transmembrane Ve1 resistance protein, and to Pseudomonas syringae, mediated by the intracellular Pto/Prf resistance protein couple. We conclude that there is a differential requirement of PLC isoforms for the plant immune response and that Sl PLC4 is specifically required for Cf-4 function, while Sl PLC6 may be a more general component of resistance protein signalling.


Genetics | 2008

Cross-Species Bacterial Artificial Chromosome–Fluorescence in Situ Hybridization Painting of the Tomato and Potato Chromosome 6 Reveals Undescribed Chromosomal Rearrangements

Xiaomin Tang; Dóra Szinay; Chunting Lang; M.S. Ramanna; Edwin van der Vossen; Erwin Datema; René Klein Lankhorst; Jan de Boer; Sander A. Peters; Chris tian Bachem; Willem J. Stiekema; Richard G. F. Visser; Hans de Jong; Yuling Bai

Ongoing genomics projects of tomato (Solanum lycopersicum) and potato (S. tuberosum) are providing unique tools for comparative mapping studies in Solanaceae. At the chromosomal level, bacterial artificial chromosomes (BACs) can be positioned on pachytene complements by fluorescence in situ hybridization (FISH) on homeologous chromosomes of related species. Here we present results of such a cross-species multicolor cytogenetic mapping of tomato BACs on potato chromosomes 6 and vice versa. The experiments were performed under low hybridization stringency, while blocking with Cot-100 was essential in suppressing excessive hybridization of repeat signals in both within-species FISH and cross-species FISH of tomato BACs. In the short arm we detected a large paracentric inversion that covers the whole euchromatin part with breakpoints close to the telomeric heterochromatin and at the border of the short arm pericentromere. The long arm BACs revealed no deviation in the colinearity between tomato and potato. Further comparison between tomato cultivars Cherry VFNT and Heinz 1706 revealed colinearity of the tested tomato BACs, whereas one of the six potato clones (RH98-856-18) showed minor putative rearrangements within the inversion. Our results present cross-species multicolor BAC–FISH as a unique tool for comparative genetic studies across Solanum species.


Molecular Plant-microbe Interactions | 2005

Tomato Defense to Oidium neolycopersici: Dominant Ol Genes Confer Isolate-Dependent Resistance Via a Different Mechanism Than Recessive ol-2

Yuling Bai; Ron van der Hulst; Guusje Bonnema; Thierry C. Marcel; Fien Meijer-Dekens; Rients E. Niks; Pim Lindhout

Tomato powdery mildew caused by Oidium neolycopersici has become a globally important disease of tomato (Lycopersicon esculentum). To study the defense responses of tomato triggered by tomato powdery mildew, we first mapped a set of resistance genes to O. neolycopersici from related Lycopersicon species. An integrated genetic map was generated showing that all the dominant resistance genes (Ol-1, Ol-3, Ol-4, Ol-5, and Ol-6) are located on tomato chromosome 6 and are organized in three genetic loci. Then, near-isogenic lines (NIL) were produced that contain the different dominant Ol genes in a L. esculentum genetic background. These NIL were used in disease tests with local isolates of O. neolycopersici in different geographic locations, demonstrating that the resistance conferred by different Ol genes was isolate-dependent and, hence, may be race-specific. In addition, the resistance mechanism was analyzed histologically. The mechanism of resistance conferred by the dominant Ol genes was associated with hypersensitive response, which varies in details depending on the Ol-gene in the NIL, while the mechanism of resistance governed by the recessive gene ol-2 on tomato chromosome 4 was associated with papillae formation.


Plant Journal | 2011

Chromosomal rearrangements between tomato and Solanum chilense hamper mapping and breeding of the TYLCV resistance gene Ty‐1

Maarten G. Verlaan; Dóra Szinay; Samuel F. Hutton; Hans de Jong; Richard Kormelink; Richard G. F. Visser; John W. Scott; Yuling Bai

Tomato yellow leaf curl disease, a devastating disease of Solanum lycopersicum (tomato), is caused by a complex of begomoviruses generally referred to as Tomato yellow leaf curl virus (TYLCV). Almost all breeding for TYLCV resistance has been based on the introgression of the Ty-1 resistance locus derived from Solanum chilense LA1969. Knowledge about the exact location of Ty-1 on tomato chromosome 6 will help in understanding the genomic organization of the Ty-1 locus. In this study, we analyze the chromosomal rearrangement and recombination behavior of the chromosomal region where Ty-1 is introgressed. Nineteen markers on tomato chromosome 6 were used in F(2) populations obtained from two commercial hybrids, and showed the presence of a large introgression in both. Fluorescence in situ hybridization (FISH) analysis revealed two chromosomal rearrangements between S. lycopersicum and S. chilense LA1969 in the Ty-1 introgression. Furthermore, a large-scale recombinant screening in the two F(2) populations was performed, and 30 recombinants in the Ty-1 introgression were identified. All recombination events were located on the long arm beyond the inversions, showing that recombination in the inverted region was absent. Disease tests on progenies of informative recombinants with TYLCV mapped Ty-1 to the long arm between markers MSc05732-4 and MSc05732-14, an interval overlapping with the reported Ty-3 region, which led to the indication that Ty-1 and Ty-3 may be allelic. With this study we prove that FISH can be used as a diagnostic tool to aid in the accurate mapping of genes that were introgressed from wild species into cultivated tomato.


PLOS ONE | 2013

Loss of function in Mlo orthologs reduces susceptibility of pepper and tomato to powdery mildew disease caused by Leveillula taurica.

Zheng Zheng; Teruo Nonomura; Michela Appiano; Stefano Pavan; Hideyoshi Toyoda; Anne-Marie A. Wolters; Richard G. F. Visser; Yuling Bai

Powdery mildew disease caused by Leveillula taurica is a serious fungal threat to greenhouse tomato and pepper production. In contrast to most powdery mildew species which are epiphytic, L. taurica is an endophytic fungus colonizing the mesophyll tissues of the leaf. In barley, Arabidopsis, tomato and pea, the correct functioning of specific homologues of the plant Mlo gene family has been found to be required for pathogenesis of epiphytic powdery mildew fungi. The aim of this study was to investigate the involvement of the Mlo genes in susceptibility to the endophytic fungus L. taurica. In tomato (Solanum lycopersicum), a loss-of-function mutation in the SlMlo1 gene results in resistance to powdery mildew disease caused by Oidium neolycopersici. When the tomato Slmlo1 mutant was inoculated with L. taurica in this study, it proved to be less susceptible compared to the control, S. lycopersicum cv. Moneymaker. Further, overexpression of SlMlo1 in the tomato Slmlo1 mutant enhanced susceptibility to L. taurica. In pepper, the CaMlo2 gene was isolated by applying a homology-based cloning approach. Compared to the previously identified CaMlo1 gene, the CaMlo2 gene is more similar to SlMlo1 as shown by phylogenetic analysis, and the expression of CaMlo2 is up-regulated at an earlier time point upon L. taurica infection. However, results of virus-induced gene silencing suggest that both CaMlo1 and CaMlo2 may be involved in the susceptibility of pepper to L. taurica. The fact that overexpression of CaMlo2 restored the susceptibility of the tomato Slmlo1 mutant to O. neolycopersici and increased its susceptibility to L. taurica confirmed the role of CaMlo2 acting as a susceptibility factor to different powdery mildews, though the role of CaMlo1 as a co-factor for susceptibility cannot be excluded.

Collaboration


Dive into the Yuling Bai's collaboration.

Top Co-Authors

Avatar

Richard G. F. Visser

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pim Lindhout

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Michela Appiano

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Anne-Marie A. Wolters

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Zheng Zheng

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christos Kissoudis

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Dóra Szinay

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Hans de Jong

Wageningen University and Research Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge