Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dominic Burg is active.

Publication


Featured researches published by Dominic Burg.


The ISME Journal | 2009

The genome sequence of the psychrophilic archaeon, Methanococcoides burtonii: the role of genome evolution in cold adaptation

Michelle A. Allen; Federico M. Lauro; Timothy J. Williams; Dominic Burg; Khawar Sohail Siddiqui; Davide De Francisci; Kevin W Y Chong; Oliver Pilak; Hwee H Chew; Matthew Z De Maere; Lily Ting; Marilyn Katrib; Charmaine Ng; Kevin R Sowers; Michael Y. Galperin; Iain Anderson; Natalia Ivanova; Eileen Dalin; Michele Martinez; Alla Lapidus; Loren Hauser; Miriam Land; Torsten Thomas; Ricardo Cavicchioli

Psychrophilic archaea are abundant and perform critical roles throughout the Earths expansive cold biosphere. Here we report the first complete genome sequence for a psychrophilic methanogenic archaeon, Methanococcoides burtonii. The genome sequence was manually annotated including the use of a five-tiered evidence rating (ER) system that ranked annotations from ER1 (gene product experimentally characterized from the parent organism) to ER5 (hypothetical gene product) to provide a rapid means of assessing the certainty of gene function predictions. The genome is characterized by a higher level of aberrant sequence composition (51%) than any other archaeon. In comparison to hyper/thermophilic archaea, which are subject to selection of synonymous codon usage, M. burtonii has evolved cold adaptation through a genomic capacity to accommodate highly skewed amino-acid content, while retaining codon usage in common with its mesophilic Methanosarcina cousins. Polysaccharide biosynthesis genes comprise at least 3.3% of protein coding genes in the genome, and Cell wall, membrane, envelope biogenesis COG genes are overrepresented. Likewise, signal transduction (COG category T) genes are overrepresented and M. burtonii has a high ‘IQ’ (a measure of adaptive potential) compared to many methanogens. Numerous genes in these two overrepresented COG categories appear to have been acquired from ɛ- and δ-Proteobacteria, as do specific genes involved in central metabolism such as a novel B form of aconitase. Transposases also distinguish M. burtonii from other archaea, and their genomic characteristics indicate they have an important role in evolving the M. burtonii genome. Our study reveals a capacity for this model psychrophile to evolve through genome plasticity (including nucleotide skew, horizontal gene transfer and transposase activity) that enables adaptation to the cold, and to the biological and physical changes that have occurred over the last several thousand years as it adapted from a marine to an Antarctic lake environment.


Cancer Research | 2012

Activation of Thermogenesis in Brown Adipose Tissue and Dysregulated Lipid Metabolism Associated with Cancer Cachexia in Mice

Maria Tsoli; Melissa M Moore; Dominic Burg; Arran Painter; Ryland Taylor; Sarah Kathleen Haas Lockie; Nigel Turner; Alessandra Warren; Gregory J. Cooney; Brian J. Oldfield; Stephen Clarke; Graham R. Robertson

Cancer cachexia/anorexia is a complex syndrome that involves profound metabolic imbalances and is directly implicated as a cause of death in at least 20% to 30% of all cancers. Brown adipose tissue (BAT) plays a key role in thermogenesis and energy balance and potentially contributes to the physiologic perturbations associated with cachexia. In this study, we investigated the impact of cachexia-inducing colorectal tumor on BAT in mice. We found that brown adipocytes were smaller and exhibited profound delipidation in cachectic tumor-bearing mice. Diurnal expression profiling of key regulators of lipid accumulation and fatty acid β-oxidation and their corresponding target genes revealed dramatic molecular changes indicative of active BAT. Increased Ucp1, Pbe, and Cpt1α expression at specific points coincided with higher BAT temperatures during the dark cycle, suggestive of a temporal stimulation of thermogenesis in cachexia. These changes persisted when cachectic mice were acclimatized to 28°C confirming inappropriate stimulation of BAT despite thermoneutrality. Evidence of inflammatory signaling also was observed in the BAT as an energetically wasteful and maladaptive response to anorexia during the development of cachexia.


Environmental Microbiology | 2011

Defining the response of a microorganism to temperatures that span its complete growth temperature range (−2°C to 28°C) using multiplex quantitative proteomics

Timothy J. Williams; Federico M. Lauro; Haluk Ertan; Dominic Burg; Anne Poljak; Mark J. Raftery; Ricardo Cavicchioli

The growth of all microorganisms is limited to a specific temperature range. However, it has not previously been determined to what extent global protein profiles change in response to temperatures that incrementally span the complete growth temperature range of a microorganism. As a result it has remained unclear to what extent cellular processes (inferred from protein abundance profiles) are affected by growth temperature and which, in particular, constrain growth at upper and lower temperature limits. To evaluate this, 8-plex iTRAQ proteomics was performed on the Antarctic microorganism, Methanococcoides burtonii. Methanococcoides burtonii was chosen due to its importance as a model psychrophilic (cold-adapted) member of the Archaea, and the fact that proteomic methods, including subcellular fractionation procedures, have been well developed. Differential abundance patterns were obtained for cells grown at seven different growth temperatures (-2°C, 1°C, 4°C, 10°C, 16°C, 23°C, 28°C) and a principal component analysis (PCA) was performed to identify trends in protein abundances. The multiplex analysis enabled three largely distinct physiological states to be described: cold stress (-2°C), cold adaptation (1°C, 4°C, 10°C and 16°C), and heat stress (23°C and 28°C). A particular feature of the thermal extremes was the synthesis of heat- and cold-specific stress proteins, reflecting the important, yet distinct ways in which temperature-induced stress manifests in the cell. This is the first quantitative proteomic investigation to simultaneously assess the response of a microorganism to numerous growth temperatures, including the upper and lower growth temperatures limits, and has revealed a new level of understanding about cellular adaptive responses.


Environmental Microbiology | 2011

Temperature‐dependent global gene expression in the Antarctic archaeon Methanococcoides burtonii

Stefano Campanaro; Timothy J. Williams; Dominic Burg; D. De Francisci; Laura Treu; Fm Lauro; Ricardo Cavicchioli

Methanococcoides burtonii is a member of the Archaea that was isolated from Ace Lake in Antarctica and is a valuable model for studying cold adaptation. Low temperature transcriptional regulation of global gene expression, and the arrangement of transcriptional units in cold-adapted archaea has not been studied. We developed a microarray for determining which genes are expressed in operons, and which are differentially expressed at low (4°C) or high (23°C) temperature. Approximately 55% of genes were found to be arranged in operons that range in length from 2 to 23 genes, and mRNA abundance tended to increase with operon length. Analysing microarray data previously obtained by others for Halobacterium salinarum revealed a similar correlation between operon length and mRNA abundance, suggesting that operons may play a similar role more broadly in the Archaea. More than 500 genes were differentially expressed at levels up to ≈ 24-fold. A notable feature was the upregulation of genes involved in maintaining RNA in a state suitable for translation in the cold. Comparison between microarray experiments and results previously obtained using proteomics indicates that transcriptional regulation (rather than translation) is primarily responsible for controlling gene expression in M. burtonii. In addition, certain genes (e.g. involved in ribosome structure and methanogenesis) appear to be regulated post-transcriptionally. This is one of few experimental studies describing the genome-wide distribution and regulation of operons in archaea.


Journal of Proteome Research | 2010

Global proteomic analysis of the insoluble, soluble, and supernatant fractions of the psychrophilic archaeon Methanococcoides burtonii. Part I: the effect of growth temperature.

Timothy J. Williams; Dominic Burg; Mark J. Raftery; Anne Poljak; Michael Guilhaus; Oliver Pilak; Ricardo Cavicchioli

The response of the cold-adapted (psychrophilic) methanogenic archaeon Methanococcoides burtonii to growth temperature was investigated using differential proteomics (postincorporation isobaric labeling) and tandem liquid chromatography-mass spectrometry (LC/LC-MS/MS). This is the first proteomic study of M. burtonii to include techniques that specifically enrich for both surface and membrane proteins and to assess the effects of growth temperature (4 vs 23 degrees C) and carbon source (trimethylamine vs methanol) on cellular protein levels. Numerous surface layer proteins were more abundant at 4 degrees C, indicating an extensive remodeling of the cell envelope in response to low temperature. Many of these surface proteins contain domains associated with cell adhesion. Within the cell, small proteins each composed of a single TRAM domain were recovered as important cold adaptation proteins and might serve as RNA chaperones, in an analogous manner to Csp proteins (absent from M. burtonii). Other proteins that had higher abundances at 4 degrees C can be similarly tied to relieving or resolving the adverse affects of cold growth temperature on translational capacity and correct protein folding. The proteome of M. burtonii grown at 23 degrees C was dominated by oxidative stress proteins, as well as a large number of integral membrane proteins of unknown function. This is the first truly global proteomic study of a psychrophilic archaeon and greatly expands knowledge of the cellular mechanisms underpinning cold adaptation in the Archaea.


Protein Engineering Design & Selection | 2010

A chemically modified α-amylase with a molten-globule state has entropically driven enhanced thermal stability

Khawar Sohail Siddiqui; Anne Poljak; Davide De Francisci; Gea Guerriero; Oliver Pilak; Dominic Burg; Mark J. Raftery; Don M. Parkin; Jill Trewhella; Ricardo Cavicchioli

The thermostability properties of TAA were investigated by chemically modifying carboxyl groups on the surface of the enzyme with AMEs. The TAA(MOD) exhibited a 200% improvement in starch-hydrolyzing productivity at 60 degrees C. By studying the kinetic, thermodynamic and biophysical properties, we found that TAA(MOD) had formed a thermostable, MG state, in which the unfolding of the tertiary structure preceded that of the secondary structure by at least 20 degrees C. The X-ray crystal structure of TAA(MOD) revealed no new permanent interactions (electrostatic or other) resulting from the modification. By deriving thermodynamic activation parameters of TAA(MOD), we rationalised that thermostabilisation have been caused by a decrease in the entropy of the transition state, rather than being enthalpically driven. Far-UV CD shows that the origin of decreased entropy may have arisen from a higher helical content of TAA(MOD). This study provides new insight into the intriguing properties of an MG state resulting from the chemical modification of TAA.


Journal of Proteome Research | 2010

Global proteomic analysis of the insoluble, soluble, and supernatant fractions of the psychrophilic archaeon Methanococcoides burtonii. Part II: the effect of different methylated growth substrates.

Timothy J. Williams; Dominic Burg; Haluk Ertan; Mark J. Raftery; Anne Poljak; Michael Guilhaus; Ricardo Cavicchioli

Methanococcoides burtonii is a cold-adapted methanogenic archaeon from Ace Lake in Antarctica. Methanol and methylamines are the only substrates it can use for carbon and energy. We carried out quantitative proteomics using iTRAQ of M. burtonii cells grown on different substrates (methanol in defined media or trimethylamine in complex media), using techniques that enriched for secreted and membrane proteins in addition to cytoplasmic proteins. By integrating proteomic data with the complete, manually annotated genome sequence of M. burtonii, we were able to gain new insight into methylotrophic metabolism and the effects of methanol on the cell. Metabolic processing of methanol and methylamines is initiated by methyltransferases specific for each substrate, with multiple paralogs for each of the methyltransferases (similar to other members of the Methanosarcinaceae). In M. burtonii, most methyltransferases appear to have distinct roles in the metabolism of methylated substrates, although two methylamine methyltransferases appear to be nonfunctional. One set of methyltransferases for trimethylamine catabolism appears to be membrane associated, potentially providing a mechanism to directly couple trimethylamine uptake to demethylation. Important roles were highlighted for citrate synthase, glutamine synthetase, acetyl-CoA decarbonylase/synthase, and pyruvate synthase in carbon and nitrogen metabolism during growth on methanol. M. burtonii had only a marginal response to the provision of exogenous amino acids (from yeast extract), indicating that it is predisposed to the endogenous synthesis of amino acids. Growth on methanol appeared to cause oxidative stress in the cell, possibly through the formation of reactive nonoxygen species and formaldehyde, and the oxidative inactivation of corrinoid proteins, with the cell responding by elevating the synthesis of universal stress (Usp) proteins, several nucleic acid binding proteins, and a serpin. In addition, changes in levels of cell envelope proteins were linked to counteracting the disruptive solvent effects of methanol on cell membranes. This is the first global proteomic study to examine the effects of different carbon sources on the growth of an obligately methylotrophic methanogen.


Journal of Proteome Research | 2010

Analyzing the hydrophobic proteome of the antarctic archaeon Methanococcoides burtonii using differential solubility fractionation.

Dominic Burg; Federico M. Lauro; Timothy J. Williams; Mark J. Raftery; Michael Guilhaus; Ricardo Cavicchioli

Proteomic studies have proven useful for studying the Antarctic archaeon Methanococcoides burtonii; however, little has been learned about the hydrophobic and membrane proteins, despite knowledge of their biological importance. In this study, new methods were developed to analyze and maximize the coverage of the hydrophobic proteome. Central to the analysis was a differential solubility fractionation (DSF) procedure using n-octyl-beta-D-glucopyranoside. The study achieved a significant increase (330) in the total number of known expressed proteins. From 612 identified, 185 were predicted to contain transmembrane domains or be associated with the membrane and 190 to be hydrophobic. The DSF procedure increased the efficacy of identifying membrane proteins by up to 169% and was economical, requiring far fewer runs (12% of machine time) to analyze the proteome compared to procedures without DSF. The analysis of peptide spectral counts enabled the assessment of growth temperature specific proteins. This semiquantitative analysis was particularly useful for identifying low abundance proteins unable to be quantified using labeling strategies. The proteogenomic analysis of the newly identified proteins revealed many cellular processes not previously associated with adaptation of the cell. This DSF-based approach is likely to benefit proteomic analyses of hydrophobic proteins for a broad range of biological systems.


Environmental Microbiology | 2011

Chaperonins from an Antarctic archaeon are predominantly monomeric: crystal structure of an open state monomer

Oliver Pilak; Stephen J. Harrop; Khawar Sohail Siddiqui; Kevin W Y Chong; Davide De Francisci; Dominic Burg; Timothy J. Williams; Ricardo Cavicchioli; Paul M. G. Curmi

Archaea are abundant in permanently cold environments. The Antarctic methanogen, Methanococcoides burtonii, has proven an excellent model for studying molecular mechanisms of cold adaptation. Methanococcoides burtonii contains three group II chaperonins that diverged prior to its closest orthologues from mesophilic Methanosarcina spp. The relative abundance of the three chaperonins shows little dependence on organism growth temperature, except at the highest temperatures, where the most thermally stable chaperonin increases in abundance. In vitro and in vivo, the M. burtonii chaperonins are predominantly monomeric, with only 23-33% oligomeric, thereby differing from other archaea where an oligomeric ring form is dominant. The crystal structure of an N-terminally truncated chaperonin reveals a monomeric protein with a fully open nucleotide binding site. When compared with closed state group II chaperonin structures, a large-scale ≈ 30° rotation between the equatorial and intermediate domains is observed resulting in an open nucleotide binding site. This is analogous to the transition observed between open and closed states of group I chaperonins but contrasts with recent archaeal group II chaperonin open state ring structures. The predominance of monomeric form and the ability to adopt a fully open nucleotide site appear to be unique features of the M. burtonii group II chaperonins.


Environmental Microbiology | 2011

Proteomics of extremophiles

Dominic Burg; Charmaine Ng; Lily Ting; Ricardo Cavicchioli

Collaboration


Dive into the Dominic Burg's collaboration.

Top Co-Authors

Avatar

Ricardo Cavicchioli

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Timothy J. Williams

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Mark J. Raftery

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Anne Poljak

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Oliver Pilak

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Charmaine Ng

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Davide De Francisci

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Michael Guilhaus

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Khawar Sohail Siddiqui

King Fahd University of Petroleum and Minerals

View shared research outputs
Top Co-Authors

Avatar

Federico M. Lauro

Nanyang Technological University

View shared research outputs
Researchain Logo
Decentralizing Knowledge