Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dominic Landgraf is active.

Publication


Featured researches published by Dominic Landgraf.


Current Psychiatry Reports | 2014

Circadian Clock and Stress Interactions in the Molecular Biology of Psychiatric Disorders

Dominic Landgraf; Michael McCarthy; David K. Welsh

Many psychiatric disorders are characterized by circadian rhythm abnormalities, including disturbed sleep/wake cycles, changes in locomotor activity, and abnormal endocrine function. Animal models with mutations in circadian “clock genes” commonly show disturbances in reward processing, locomotor activity and novelty seeking behaviors, further supporting the idea of a connection between the circadian clock and psychiatric disorders. However, if circadian clock dysfunction is a common risk factor for multiple psychiatric disorders, it is unknown if and how these putative clock abnormalities could be expressed differently, and contribute to multiple, distinct phenotypes. One possible explanation is that the circadian clock modulates the biological responses to stressful environmental factors that vary with an individual’s experience. It is known that the circadian clock and the stress response systems are closely related: Circadian clock genes regulate the physiological sensitivity to and rhythmic release of glucocorticoids (GC). In turn, GCs have reciprocal effects on the clock. Since stressful life events or increased vulnerability to stress are risk factors for multiple psychiatric disorders, including post-traumatic stress disorder (PTSD), attention deficit hyperactivity disorder (ADHD), bipolar disorder (BD), major depressive disorder (MDD), alcohol use disorder (AUD) and schizophrenia (SCZ), we propose that modulation of the stress response is a common mechanism by which circadian clock genes affect these illnesses. Presently, we review how molecular components of the circadian clock may contribute to these six psychiatric disorders, and present the hypothesis that modulation of the stress response may constitute a common mechanism by which the circadian clock affects multiple psychiatric disorders.


Behavioral Neuroscience | 2014

The role of the circadian clock in animal models of mood disorders

Dominic Landgraf; Michael McCarthy; David K. Welsh

An association between circadian clock function and mood regulation is well established and has been proposed as a factor in the development of mood disorders. Patients with depression or mania suffer disturbed sleep-wake cycles and altered rhythms in daily activities. Environmentally disrupted circadian rhythms increase the risk of mood disorders in the general population. However, proof that a disturbance of circadian rhythms is causally involved in the development of psychiatric disorders remains elusive. Using clock gene mutants, manipulations of sleep-wake and light-dark cycles, and brain lesions affecting clock function, animal models have been developed to investigate whether circadian rhythm disruptions alter mood. In this review, selected animal models are examined to address the issue of causality between circadian rhythms and affective behavior.


Current Psychiatry Reports | 2015

Circadian Clocks as Modulators of Metabolic Comorbidity in Psychiatric Disorders.

Rita Barandas; Dominic Landgraf; Michael McCarthy; David K. Welsh

Psychiatric disorders such as schizophrenia, bipolar disorder, and major depressive disorder are often accompanied by metabolic dysfunction symptoms, including obesity and diabetes. Since the circadian system controls important brain systems that regulate affective, cognitive, and metabolic functions, and neuropsychiatric and metabolic diseases are often correlated with disturbances of circadian rhythms, we hypothesize that dysregulation of circadian clocks plays a central role in metabolic comorbidity in psychiatric disorders. In this review paper, we highlight the role of circadian clocks in glucocorticoid, dopamine, and orexin/melanin-concentrating hormone systems and describe how a dysfunction of these clocks may contribute to the simultaneous development of psychiatric and metabolic symptoms.


BMC Biology | 2017

Enhancing circadian clock function in cancer cells inhibits tumor growth

Silke Kiessling; Lou Beaulieu-Laroche; Ian D. Blum; Dominic Landgraf; David K. Welsh; Kai-Florian Storch; Nathalie Labrecque; Nicolas Cermakian

BackgroundCircadian clocks control cell cycle factors, and circadian disruption promotes cancer. To address whether enhancing circadian rhythmicity in tumor cells affects cell cycle progression and reduces proliferation, we compared growth and cell cycle events of B16 melanoma cells and tumors with either a functional or dysfunctional clock.ResultsWe found that clock genes were suppressed in B16 cells and tumors, but treatments inducing circadian rhythmicity, such as dexamethasone, forskolin and heat shock, triggered rhythmic clock and cell cycle gene expression, which resulted in fewer cells in S phase and more in G1 phase. Accordingly, B16 proliferation in vitro and tumor growth in vivo was slowed down. Similar effects were observed in human colon carcinoma HCT-116 cells. Notably, the effects of dexamethasone were not due to an increase in apoptosis nor to an enhancement of immune cell recruitment to the tumor. Knocking down the essential clock gene Bmal1 in B16 tumors prevented the effects of dexamethasone on tumor growth and cell cycle events.ConclusionsHere we demonstrated that the effects of dexamethasone on cell cycle and tumor growth are mediated by the tumor-intrinsic circadian clock. Thus, our work reveals that enhancing circadian clock function might represent a novel strategy to control cancer progression.


PLOS Genetics | 2016

NPAS2 Compensates for Loss of CLOCK in Peripheral Circadian Oscillators.

Dominic Landgraf; Lexie L. Wang; Tanja Diemer; David K. Welsh

Heterodimers of CLOCK and BMAL1 are the major transcriptional activators of the mammalian circadian clock. Because the paralog NPAS2 can substitute for CLOCK in the suprachiasmatic nucleus (SCN), the master circadian pacemaker, CLOCK-deficient mice maintain circadian rhythms in behavior and in tissues in vivo. However, when isolated from the SCN, CLOCK-deficient peripheral tissues are reportedly arrhythmic, suggesting a fundamental difference in circadian clock function between SCN and peripheral tissues. Surprisingly, however, using luminometry and single-cell bioluminescence imaging of PER2 expression, we now find that CLOCK-deficient dispersed SCN neurons and peripheral cells exhibit similarly stable, autonomous circadian rhythms in vitro. In CLOCK-deficient fibroblasts, knockdown of Npas2 leads to arrhythmicity, suggesting that NPAS2 can compensate for loss of CLOCK in peripheral cells as well as in SCN. Our data overturn the notion of an SCN-specific role for NPAS2 in the molecular circadian clock, and instead indicate that, at the cellular level, the core loops of SCN neuron and peripheral cell circadian clocks are fundamentally similar.


European Journal of Neuroscience | 2016

Depression-like behaviour in mice is associated with disrupted circadian rhythms in nucleus accumbens and periaqueductal grey

Dominic Landgraf; Jaimie E. Long; David K. Welsh

An association between circadian rhythms and mood regulation is well established, and disturbed circadian clocks are believed to contribute to the development of mood disorders, including major depressive disorder. The circadian system is coordinated by the suprachiasmatic nucleus (SCN), the master pacemaker in the hypothalamus that receives light input from the retina and synchronizes circadian oscillators in other brain regions and peripheral tissues. Lacking the tight neuronal network that couples single‐cell oscillators in the SCN, circadian clocks outside the SCN may be less stable and more susceptible to disturbances, for example by clock gene mutations or uncontrollable stress. However, non‐SCN circadian clocks have not been studied extensively in rodent models of mood disorders. In the present study, it was hypothesized that disturbances of local circadian clocks in mood‐regulating brain areas are associated with depression‐like behaviour in mice. Using the learned helplessness procedure, depression‐like behaviour was evoked in mice bearing the PER2::LUC circadian reporter, and then circadian rhythms of PER2 expression were examined in brain slices from these mice using luminometry and bioluminescence imaging. It was found that helplessness is associated with absence of circadian rhythms in the nucleus accumbens and the periaqueductal grey, two of the most critical brain regions within the reward circuit. The current study provides evidence that susceptibility of mice to depression‐like behaviour is associated with disturbed local circadian clocks in a subset of mood‐regulating brain areas, but the direction of causality remains to be determined.


Biological Psychiatry | 2016

Genetic Disruption of Circadian Rhythms in the Suprachiasmatic Nucleus Causes Helplessness, Behavioral Despair, and Anxiety-like Behavior in Mice

Dominic Landgraf; Jaimie E. Long; Christophe D. Proulx; Rita Barandas; Roberto Malinow; David K. Welsh

BACKGROUND Major depressive disorder is associated with disturbed circadian rhythms. To investigate the causal relationship between mood disorders and circadian clock disruption, previous studies in animal models have employed light/dark manipulations, global mutations of clock genes, or brain area lesions. However, light can impact mood by noncircadian mechanisms; clock genes have pleiotropic, clock-independent functions; and brain lesions not only disrupt cellular circadian rhythms but also destroy cells and eliminate important neuronal connections, including light reception pathways. Thus, a definitive causal role for functioning circadian clocks in mood regulation has not been established. METHODS We stereotactically injected viral vectors encoding short hairpin RNA to knock down expression of the essential clock gene Bmal1 into the brains master circadian pacemaker, the suprachiasmatic nucleus (SCN). RESULTS In these SCN-specific Bmal1-knockdown (SCN-Bmal1-KD) mice, circadian rhythms were greatly attenuated in the SCN, while the mice were maintained in a standard light/dark cycle, SCN neurons remained intact, and neuronal connections were undisturbed, including photic inputs. In the learned helplessness paradigm, the SCN-Bmal1-KD mice were slower to escape, even before exposure to inescapable stress. They also spent more time immobile in the tail suspension test and less time in the lighted section of a light/dark box. The SCN-Bmal1-KD mice also showed greater weight gain, an abnormal circadian pattern of corticosterone, and an attenuated increase of corticosterone in response to stress. CONCLUSIONS Disrupting SCN circadian rhythms is sufficient to cause helplessness, behavioral despair, and anxiety-like behavior in mice, establishing SCN-Bmal1-KD mice as a new animal model of depression.


Frontiers in Neuroanatomy | 2014

Embryonic development of circadian clocks in the mammalian suprachiasmatic nuclei.

Dominic Landgraf; Christiane Koch; Henrik Oster

In most species, self-sustained molecular clocks regulate 24-h rhythms of behavior and physiology. In mammals, a circadian pacemaker residing in the hypothalamic suprachiasmatic nucleus (SCN) receives photic signals from the retina and synchronizes subordinate clocks in non-SCN tissues. The emergence of circadian rhythmicity during development has been extensively studied for many years. In mice, neuronal development in the presumptive SCN region of the embryonic hypothalamus occurs on days 12–15 of gestation. Intra-SCN circuits differentiate during the following days and retinal projections reach the SCN, and thus mediate photic entrainment, only after birth. In contrast the genetic components of the clock gene machinery are expressed much earlier and during midgestation SCN explants and isolated neurons are capable of generating molecular oscillations in culture. In vivo metabolic rhythms in the SCN, however, are observed not earlier than the 19th day of rat gestation, and rhythmic expression of clock genes is hardly detectable until after birth. Together these data indicate that cellular coupling and, thus, tissue-wide synchronization of single-cell rhythms, may only develop very late during embryogenesis. In this mini-review we describe the developmental origin of the SCN structure and summarize our current knowledge about the functional initiation and entrainment of the circadian pacemaker during embryonic development.


PLOS ONE | 2015

Dissociation of Learned Helplessness and Fear Conditioning in Mice: A Mouse Model of Depression

Dominic Landgraf; Jaimie Long; Andre Der-Avakian; Margo Streets; David K. Welsh

The state of being helpless is regarded as a central aspect of depression, and therefore the learned helplessness paradigm in rodents is commonly used as an animal model of depression. The term ‘learned helplessness’ refers to a deficit in escaping from an aversive situation after an animal is exposed to uncontrollable stress specifically, with a control/comparison group having been exposed to an equivalent amount of controllable stress. A key feature of learned helplessness is the transferability of helplessness to different situations, a phenomenon called ‘trans-situationality’. However, most studies in mice use learned helplessness protocols in which training and testing occur in the same environment and with the same type of stressor. Consequently, failures to escape may reflect conditioned fear of a particular environment, not a general change of the helpless state of an animal. For mice, there is no established learned helplessness protocol that includes the trans-situationality feature. Here we describe a simple and reliable learned helplessness protocol for mice, in which training and testing are carried out in different environments and with different types of stressors. We show that with our protocol approximately 50% of mice develop learned helplessness that is not attributable to fear conditioning.


Neuroscience | 2017

Cellular circadian oscillators in the suprachiasmatic nucleus remain coupled in the absence of connexin-36

Tanja Diemer; Dominic Landgraf; Takako Noguchi; Haiyun Pan; Jose L. Moreno; David K. Welsh

In mammals, the master circadian clock resides in the suprachiasmatic nucleus (SCN). The SCN is characterized by robust circadian oscillations of clock gene expression and neuronal firing. The synchronization of circadian oscillations among individual cells in the SCN is attributed to intercellular coupling. Previous studies have shown that gap junctions, specifically those composed of connexin-36 (Cx36) subunits, are required for coupling of electrical firing among SCN neurons at a time scale of milliseconds. However, it remains unknown whether Cx36 gap junctions also contribute to coupling of circadian (∼24h) rhythms of clock gene expression. Here, we investigated circadian expression patterns of the clock gene Period 2 (Per2) in the SCN of Cx36-deficient mice using luminometry and single-cell bioluminescence imaging. Surprisingly, we found that synchronization of circadian PER2 expression rhythms is maintained in SCN explants from Cx36-deficient mice. Since Cx36 expression levels change with age, we also tested circadian running-wheel behavior of juvenile (3-4weeks old) and adult (9-30weeks old) Cx36-deficient mice. We found that impact of connexin-36 expression on circadian behavior changes greatly during postnatal development. However, consistent with the intact synchrony among SCN cells in cultured explants, Cx36-deficient mice had intact locomotor circadian rhythms, although adults displayed a lengthened period in constant darkness. Our data indicate that even though Cx36 may be required for electrical coupling of SCN cells, it does not affect coupling of molecular clock gene rhythms. Thus, electrical coupling of neurons and coupling of circadian clock gene oscillations can be regulated independently in the SCN.

Collaboration


Dive into the Dominic Landgraf's collaboration.

Top Co-Authors

Avatar

David K. Welsh

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jaimie E. Long

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Heather Wei

University of California

View shared research outputs
Top Co-Authors

Avatar

Jaimie Long

University of California

View shared research outputs
Top Co-Authors

Avatar

Margo Streets

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tanja Diemer

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge