Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David K. Welsh is active.

Publication


Featured researches published by David K. Welsh.


Neuron | 1995

Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms

David K. Welsh; Diomedes E. Logothetis; Markus Meister; Steven M. Reppert

Within the mammalian hypothalamus, the suprachiasmatic nucleus (SCN) contains a circadian clock for timing of diverse neuronal, endocrine, and behavioral rhythms. By culturing cells from neonatal rat SCN on fixed microelectrode arrays, we have been able to record spontaneous action potentials from individual SCN neurons for days or weeks, revealing prominent circadian rhythms in firing rate. Despite abundant functional synapses, circadian rhythms expressed by neurons in the same culture are not synchronized. After reversible blockade of neuronal firing lasting 2.5 days, circadian firing rhythms re-emerge with unaltered phases. These data suggest that the SCN contains a large population of autonomous, single-cell circadian oscillators, and that synapses formed in vitro are neither necessary for operation of these oscillators nor sufficient for synchronizing them.


Annual Review of Physiology | 2010

Suprachiasmatic Nucleus: Cell Autonomy and Network Properties

David K. Welsh; Joseph S. Takahashi; Steve A. Kay

The suprachiasmatic nucleus (SCN) is the primary circadian pacemaker in mammals. Individual SCN neurons in dispersed culture can generate independent circadian oscillations of clock gene expression and neuronal firing. However, SCN rhythmicity depends on sufficient membrane depolarization and levels of intracellular calcium and cAMP. In the intact SCN, cellular oscillations are synchronized and reinforced by rhythmic synaptic input from other cells, resulting in a reproducible topographic pattern of distinct phases and amplitudes specified by SCN circuit organization. The SCN network synchronizes its component cellular oscillators, reinforces their oscillations, responds to light input by altering their phase distribution, increases their robustness to genetic perturbations, and enhances their precision. Thus, even though individual SCN neurons can be cell-autonomous circadian oscillators, neuronal network properties are integral to normal function of the SCN.


Cell | 2007

Intercellular Coupling Confers Robustness against Mutations in the SCN Circadian Clock Network

Andrew C. Liu; David K. Welsh; Caroline H. Ko; Hien G. Tran; Eric E. Zhang; Aaron A. Priest; Ethan D. Buhr; Oded Singer; Kirsten Meeker; Inder M. Verma; Francis J. Doyle; Joseph S. Takahashi; Steve A. Kay

Molecular mechanisms of the mammalian circadian clock have been studied primarily by genetic perturbation and behavioral analysis. Here, we used bioluminescence imaging to monitor Per2 gene expression in tissues and cells from clock mutant mice. We discovered that Per1 and Cry1 are required for sustained rhythms in peripheral tissues and cells, and in neurons dissociated from the suprachiasmatic nuclei (SCN). Per2 is also required for sustained rhythms, whereas Cry2 and Per3 deficiencies cause only period length defects. However, oscillator network interactions in the SCN can compensate for Per1 or Cry1 deficiency, preserving sustained rhythmicity in mutant SCN slices and behavior. Thus, behavior does not necessarily reflect cell-autonomous clock phenotypes. Our studies reveal previously unappreciated requirements for Per1, Per2, and Cry1 in sustaining cellular circadian rhythmicity and demonstrate that SCN intercellular coupling is essential not only to synchronize component cellular oscillators but also for robustness against genetic perturbations.


Nature Genetics | 2006

Feedback repression is required for mammalian circadian clock function

Trey K. Sato; Rikuhiro G. Yamada; Hideki Ukai; Julie E. Baggs; Loren Miraglia; Tetsuya J. Kobayashi; David K. Welsh; Steve A. Kay; Hiroki R. Ueda; John B. Hogenesch

Direct evidence for the requirement of transcriptional feedback repression in circadian clock function has been elusive. Here, we developed a molecular genetic screen in mammalian cells to identify mutants of the circadian transcriptional activators CLOCK and BMAL1, which were uncoupled from CRYPTOCHROME (CRY)-mediated transcriptional repression. Notably, mutations in the PER-ARNT-SIM domain of CLOCK and the C terminus of BMAL1 resulted in synergistic insensitivity through reduced physical interactions with CRY. Coexpression of these mutant proteins in cultured fibroblasts caused arrhythmic phenotypes in population and single-cell assays. These data demonstrate that CRY-mediated repression of the CLOCK/BMAL1 complex activity is required for maintenance of circadian rhythmicity and provide formal proof that transcriptional feedback is required for mammalian clock function.


Nature | 2011

Duplications of the neuropeptide receptor gene VIPR2 confer significant risk for schizophrenia

Vladimir Vacic; Shane McCarthy; Dheeraj Malhotra; Fiona Murray; Hsun Hua Chou; Aine Peoples; Vladimir Makarov; Seungtai Yoon; Abhishek Bhandari; Roser Corominas; Lilia M. Iakoucheva; Olga Krastoshevsky; Verena Krause; Verãnica Larach-Walters; David K. Welsh; David Craig; John R. Kelsoe; Elliot S. Gershon; Suzanne M. Leal; Marie Dell Aquila; Derek W. Morris; Michael Gill; Aiden Corvin; Paul A. Insel; Jon McClellan; Mary Claire King; Maria Karayiorgou; Deborah L. Levy; Lynn E. DeLisi; Jonathan Sebat

Rare copy number variants (CNVs) have a prominent role in the aetiology of schizophrenia and other neuropsychiatric disorders. Substantial risk for schizophrenia is conferred by large (>500-kilobase) CNVs at several loci, including microdeletions at 1q21.1 (ref. 2), 3q29 (ref. 3), 15q13.3 (ref. 2) and 22q11.2 (ref. 4) and microduplication at 16p11.2 (ref. 5). However, these CNVs collectively account for a small fraction (2–4%) of cases, and the relevant genes and neurobiological mechanisms are not well understood. Here we performed a large two-stage genome-wide scan of rare CNVs and report the significant association of copy number gains at chromosome 7q36.3 with schizophrenia. Microduplications with variable breakpoints occurred within a 362-kilobase region and were detected in 29 of 8,290 (0.35%) patients versus 2 of 7,431 (0.03%) controls in the combined sample. All duplications overlapped or were located within 89 kilobases upstream of the vasoactive intestinal peptide receptor gene VIPR2. VIPR2 transcription and cyclic-AMP signalling were significantly increased in cultured lymphocytes from patients with microduplications of 7q36.3. These findings implicate altered vasoactive intestinal peptide signalling in the pathogenesis of schizophrenia and indicate the VPAC2 receptor as a potential target for the development of new antipsychotic drugs.


PLOS Genetics | 2005

Redundant Function of REV-ERBα and β and Non-Essential Role for Bmal1 Cycling in Transcriptional Regulation of Intracellular Circadian Rhythms

Andrew C. Liu; Hien G. Tran; Eric E. Zhang; Aaron A. Priest; David K. Welsh; Steve A. Kay

The mammalian circadian clockwork is composed of a core PER/CRY feedback loop and additional interlocking loops. In particular, the ROR/REV/Bmal1 loop, consisting of ROR activators and REV-ERB repressors that regulate Bmal1 expression, is thought to “stabilize” core clock function. However, due to functional redundancy and pleiotropic effects of gene deletions, the role of the ROR/REV/Bmal1 loop has not been accurately defined. In this study, we examined cell-autonomous circadian oscillations using combined gene knockout and RNA interference and demonstrated that REV-ERBα and β are functionally redundant and are required for rhythmic Bmal1 expression. In contrast, the RORs contribute to Bmal1 amplitude but are dispensable for Bmal1 rhythm. We provide direct in vivo genetic evidence that the REV-ERBs also participate in combinatorial regulation of Cry1 and Rorc expression, leading to their phase-delay relative to Rev-erbα. Thus, the REV-ERBs play a more prominent role than the RORs in the basic clock mechanism. The cellular genetic approach permitted testing of the robustness of the intracellular core clock function. We showed that cells deficient in both REV-ERBα and β function, or those expressing constitutive BMAL1, were still able to generate and maintain normal Per2 rhythmicity. Our findings thus underscore the resilience of the intracellular clock mechanism and provide important insights into the transcriptional topologies underlying the circadian clock. Since REV-ERB function and Bmal1 mRNA/protein cycling are not necessary for basic clock function, we propose that the major role of the ROR/REV/Bmal1 loop and its constituents is to control rhythmic transcription of clock output genes.


Science | 2012

Identification of Small Molecule Activators of Cryptochrome

Tsuyoshi Hirota; Jae Wook Lee; Peter C. St. John; Mariko Sawa; Keiko Iwaisako; Takako Noguchi; Pagkapol Y. Pongsawakul; Tim Sonntag; David K. Welsh; David A. Brenner; Francis J. Doyle; Peter G. Schultz; Steve A. Kay

Modulating the Clock Because of the close association of the circadian clock with a wide range of physiological processes, identification of clock-modulating small molecules may prove useful for the treatment of circadian-related disorders, which include circadian sleep disorders, cardiovascular disease, cancer, and metabolic disease. Hirota et al. (p. 1094, published online 12 July) screened for chemical compounds that affected the period of the circadian clock in a human osteosarcoma cell line. A carbazole derivative named KL001 appeared to act by inhibiting proteolytic degradation of the cryptochrome proteins, which in turn caused a lengthening of the circadian period. KL001 also inhibited glucagon-induced gluconeogenesis in primary cultures of mouse hepatocytes. A small molecule binds to a core protein in the circadian clock and slows down time. Impairment of the circadian clock has been associated with numerous disorders, including metabolic disease. Although small molecules that modulate clock function might offer therapeutic approaches to such diseases, only a few compounds have been identified that selectively target core clock proteins. From an unbiased cell-based circadian phenotypic screen, we identified KL001, a small molecule that specifically interacts with cryptochrome (CRY). KL001 prevented ubiquitin-dependent degradation of CRY, resulting in lengthening of the circadian period. In combination with mathematical modeling, our studies using KL001 revealed that CRY1 and CRY2 share a similar functional role in the period regulation. Furthermore, KL001-mediated CRY stabilization inhibited glucagon-induced gluconeogenesis in primary hepatocytes. KL001 thus provides a tool to study the regulation of CRY-dependent physiology and aid development of clock-based therapeutics of diabetes.


PLOS Biology | 2010

Emergence of Noise-Induced Oscillations in the Central Circadian Pacemaker

Caroline H. Ko; Yujiro R. Yamada; David K. Welsh; Ethan D. Buhr; Andrew C. Liu; Eric E. Zhang; Martin R. Ralph; Steve A. Kay; Daniel B. Forger; Joseph S. Takahashi

Computational modeling and experimentation explain how intercellular coupling and intracellular noise can generate oscillations in a mammalian neuronal network even in the absence of cell-autonomous oscillators.


Proceedings of the National Academy of Sciences of the United States of America | 2009

A model of the cell-autonomous mammalian circadian clock

Henry Mirsky; Andrew C. Liu; David K. Welsh; Steve A. Kay; Francis J. Doyle

Circadian timekeeping by intracellular molecular clocks is evident widely in prokaryotes and eukaryotes. The clockworks are driven by autoregulatory feedback loops that lead to oscillating levels of components whose maxima are in fixed phase relationships with one another. These phase relationships are the key metric characterizing the operation of the clocks. In this study, we built a mathematical model from the regulatory structure of the intracellular circadian clock in mice and identified its parameters using an iterative evolutionary strategy, with minimum cost achieved through conformance to phase separations seen in cell-autonomous oscillators. The model was evaluated against the experimentally observed cell-autonomous circadian phenotypes of gene knockouts, particularly retention of rhythmicity and changes in expression level of molecular clock components. These tests reveal excellent de novo predictive ability of the model. Furthermore, sensitivity analysis shows that these knockout phenotypes are robust to parameter perturbation.


Journal of Biological Rhythms | 2012

Cellular Circadian Clocks in Mood Disorders

Michael McCarthy; David K. Welsh

Bipolar disorder (BD) and major depressive disorder (MDD) are heritable neuropsychiatric disorders associated with disrupted circadian rhythms. The hypothesis that circadian clock dysfunction plays a causal role in these disorders has endured for decades but has been difficult to test and remains controversial. In the meantime, the discovery of clock genes and cellular clocks has revolutionized our understanding of circadian timing. Cellular circadian clocks are located in the suprachiasmatic nucleus (SCN), the brain’s primary circadian pacemaker, but also throughout the brain and peripheral tissues. In BD and MDD patients, defects have been found in SCN-dependent rhythms of body temperature and melatonin release. However, these are imperfect and indirect indicators of SCN function. Moreover, the SCN may not be particularly relevant to mood regulation, whereas the lateral habenula, ventral tegmentum, and hippocampus, which also contain cellular clocks, have established roles in this regard. Dysfunction in these non-SCN clocks could contribute directly to the pathophysiology of BD/MDD. We hypothesize that circadian clock dysfunction in non-SCN clocks is a trait marker of mood disorders, encoded by pathological genetic variants. Because network features of the SCN render it uniquely resistant to perturbation, previous studies of SCN outputs in mood disorders patients may have failed to detect genetic defects affecting non-SCN clocks, which include not only mood-regulating neurons in the brain but also peripheral cells accessible in human subjects. Therefore, reporters of rhythmic clock gene expression in cells from patients or mouse models could provide a direct assay of the molecular gears of the clock, in cellular clocks that are likely to be more representative than the SCN of mood-regulating neurons in patients. This approach, informed by the new insights and tools of modern chronobiology, will allow a more definitive test of the role of cellular circadian clocks in mood disorders.

Collaboration


Dive into the David K. Welsh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steve A. Kay

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takako Noguchi

University of California

View shared research outputs
Top Co-Authors

Avatar

Andrew C. Liu

Genomics Institute of the Novartis Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Joseph S. Takahashi

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Eric E. Zhang

Genomics Institute of the Novartis Research Foundation

View shared research outputs
Top Co-Authors

Avatar

John R. Kelsoe

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge