Dominic M. Tucker
Virginia Tech
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dominic M. Tucker.
Plant Physiology | 2008
Roger W. Innes; Carine Ameline-Torregrosa; Tom Ashfield; Ethalinda Cannon; Steven B. Cannon; Ben Chacko; Nicolas W.G. Chen; Arnaud Couloux; Anita Dalwani; Roxanne Denny; Shweta Deshpande; Ashley N. Egan; Natasha Glover; Christian S. Hans; Stacy Howell; Dan Ilut; Scott A. Jackson; Hongshing Lai; J. A. Mammadov; Sara Martin del Campo; Michelle Metcalf; Ashley Nguyen; Majesta O'Bleness; Bernard E. Pfeil; Ram Podicheti; Milind B. Ratnaparkhe; Sylvie Samain; Iryna Sanders; Béatrice Segurens; Mireille Sévignac
The genomes of most, if not all, flowering plants have undergone whole genome duplication events during their evolution. The impact of such polyploidy events is poorly understood, as is the fate of most duplicated genes. We sequenced an approximately 1 million-bp region in soybean (Glycine max) centered on the Rpg1-b disease resistance gene and compared this region with a region duplicated 10 to 14 million years ago. These two regions were also compared with homologous regions in several related legume species (a second soybean genotype, Glycine tomentella, Phaseolus vulgaris, and Medicago truncatula), which enabled us to determine how each of the duplicated regions (homoeologues) in soybean has changed following polyploidy. The biggest change was in retroelement content, with homoeologue 2 having expanded to 3-fold the size of homoeologue 1. Despite this accumulation of retroelements, over 77% of the duplicated low-copy genes have been retained in the same order and appear to be functional. This finding contrasts with recent analyses of the maize (Zea mays) genome, in which only about one-third of duplicated genes appear to have been retained over a similar time period. Fluorescent in situ hybridization revealed that the homoeologue 2 region is located very near a centromere. Thus, pericentromeric localization, per se, does not result in a high rate of gene inactivation, despite greatly accelerated retrotransposon accumulation. In contrast to low-copy genes, nucleotide-binding-leucine-rich repeat disease resistance gene clusters have undergone dramatic species/homoeologue-specific duplications and losses, with some evidence for partitioning of subfamilies between homoeologues.
The Plant Genome | 2010
M. A. Saghai Maroof; Dominic M. Tucker; Jeffrey A. Skoneczka; Brian C. Bowman; Sucheta Tripathy; S. A. Tolin
Soybean mosaic virus (SMV) is a prevalent virus infecting soybean (Glycine max L. Merr) worldwide. The incorporation of Rsv4, conferring resistance to all currently known strains in the United States, can assist in creating durable virus resistance in soybean. Additionally, lines heterozygous at the Rsv4 locus often express a late susceptible phenotype, showing symptoms only in mid to late vegetative growth. In this study the whole‐genome shotgun sequence (WGS) of soybean was utilized for fine mapping and examining potential Rsv4 gene candidates in two populations. Six markers, designed from the WGS, were used to localize Rsv4 in the same, 1.3‐cM region in both mapping populations, a physical interval of less than 100 kb on chromosome 2. This region contained no sequences previously related to virus resistance, namely nucleotide binding site‐leucine rich repeat gene sequences or eukaryotic translation initiation factors. Instead, sequence analysis revealed several predicted transcription factors and unknown protein products. We conclude that Rsv4 likely belongs to a new class of resistance genes that interfere with viral infection and cell‐to‐cell movement, and delay vascular movement.
Euphytica | 2007
Dominic M. Tucker; C. A. Griffey; Sixin Liu; Gina Brown-Guedira; D. S. Marshall; M. A. Saghai Maroof
Hypersensitive, race specific genes primarily have been deployed to control powdery mildew (Blumeria graminis (DC) EO Speer f. sp. tritici) in wheat (Triticum aestivum L.); however, recent efforts have shifted to breeding for more durable resistance. Previously, three quantitative trait loci (QTL) for adult plant resistance (APR) to powdery mildew in the winter wheat cultivar Massey were identified in a Becker/Massey (BM) F2:3 population. Fourteen new simple sequence repeat (SSR) markers were added to the pre-existing BM F2:3 linkage maps near the QTL for APR on chromosomes 1BL (QPm.vt-1BL), 2AL (QPm.vt-2AL), and 2BL (QPm.vt-2BL). Genetic linkage maps comprised of 17 previously and newly mapped SSRs from the BM population on chromosomes 1BL, 2AL, and 2BL were constructed in a USG 3209/Jaypee (UJ) F6:7 recombinant inbred line (RIL) confirmation population, wherein the APR resistance of USG 3209 was derived from Massey. Interval mapping analysis of mildew severity data collected in 2002 (F5:6) and 2003 (F6:7) field experiments with marker genotypic data obtained in 2003 (F6:7) confirmed the presence of the three QTL governing APR to powdery mildew in the UJ RILs. The QTL QPm.vt-1BL, QPm.vt-2AL, and QPm.vt-2BL explained 12–13, 59–69, and 22–48% of the phenotypic variance for powdery mildew severity in the UJ confirmation populations, respectively, in two field experiments. The current study verified that the elite wheat cultivar USG 3209 possesses the same QTL for APR as its parent Massey.
Plant Physiology | 2008
Adam Wawrzynski; Tom Ashfield; Nicolas W.G. Chen; J. A. Mammadov; Ashley Nguyen; Ram Podicheti; Steven B. Cannon; Vincent Thareau; Carine Ameline-Torregrosa; Ethalinda Cannon; Ben Chacko; Arnaud Couloux; Anita Dalwani; Roxanne Denny; Shweta Deshpande; Ashley N. Egan; Natasha Glover; Stacy Howell; Dan Ilut; Hongshing Lai; Sara Martin del Campo; Michelle Metcalf; Majesta O'Bleness; Bernard E. Pfeil; Milind B. Ratnaparkhe; Sylvie Samain; Iryna Sanders; Béatrice Segurens; Mireille Sévignac; Sue Sherman-Broyles
Retrotransposons and their remnants often constitute more than 50% of higher plant genomes. Although extensively studied in monocot crops such as maize (Zea mays) and rice (Oryza sativa), the impact of retrotransposons on dicot crop genomes is not well documented. Here, we present an analysis of retrotransposons in soybean (Glycine max). Analysis of approximately 3.7 megabases (Mb) of genomic sequence, including 0.87 Mb of pericentromeric sequence, uncovered 45 intact long terminal repeat (LTR)-retrotransposons. The ratio of intact elements to solo LTRs was 8:1, one of the highest reported to date in plants, suggesting that removal of retrotransposons by homologous recombination between LTRs is occurring more slowly in soybean than in previously characterized plant species. Analysis of paired LTR sequences uncovered a low frequency of deletions relative to base substitutions, indicating that removal of retrotransposon sequences by illegitimate recombination is also operating more slowly. Significantly, we identified three subfamilies of nonautonomous elements that have replicated in the recent past, suggesting that retrotransposition can be catalyzed in trans by autonomous elements elsewhere in the genome. Analysis of 1.6 Mb of sequence from Glycine tomentella, a wild perennial relative of soybean, uncovered 23 intact retroelements, two of which had accumulated no mutations in their LTRs, indicating very recent insertion. A similar pattern was found in 0.94 Mb of sequence from Phaseolus vulgaris (common bean). Thus, autonomous and nonautonomous retrotransposons appear to be both abundant and active in Glycine and Phaseolus. The impact of nonautonomous retrotransposon replication on genome size appears to be much greater than previously appreciated.
The Plant Genome | 2010
Hehe Wang; LaChelle Waller; Sucheta Tripathy; Steven K. St. Martin; Lecong Zhou; Konstantinos Krampis; Dominic M. Tucker; Yongcai Mao; Ina Hoeschele; M. A. Saghai Maroof; Brett M. Tyler; Anne E. Dorrance
Few quantitative trait loci (QTL) have been mapped for the expression of partial resistance to Phytophthora sojae in soybean and very little is known about the molecular mechanisms that contribute to this trait. Therefore, the objectives of this study were to identify additional QTL conferring resistance to P. sojae and to identify candidate genes that may contribute to this form of defense. QTL on chromosomes 12, 13, 14, 17, and 19, each explaining 4 to 7% of the phenotypic variation, were identified using 186 RILs from a cross of the partially resistant cultivar ‘Conrad’ and susceptible cultivar ‘Sloan’ through composite interval mapping. Microarray analysis identified genes with significant differences in transcript abundances between Conrad and Sloan, both constitutively and following inoculation. Of these genes, 55 mapped to the five QTL regions. Ten genes encoded proteins with unknown functions, while the others encode proteins related to defense or physiological traits. Seventeen genes within the genomic region that encompass the QTL were selected and their transcript abundance was confirmed by quantitative reverse transcription polymerase chain reaction (qRT‐PCR). These results suggest a complex QTL‐mediated resistance network. This study will contribute to soybean resistance breeding by providing additional QTL for marker‐assisted selection as well as a list of candidate genes which may be manipulated to confer resistance.
BMC Genomics | 2015
Silvas J. Prince; Li Song; Dan Qiu; Joao V. Maldonado dos Santos; Chenglin Chai; Trupti Joshi; Gunvant Patil; Babu Valliyodan; Tri D. Vuong; Mackensie Murphy; Konstantinos Krampis; Dominic M. Tucker; R. M. Biyashev; Anne E. Dorrance; M. A. Saghai Maroof; Dong Xu; J. Grover Shannon; Henry T. Nguyen
BackgroundRoot system architecture is important for water acquisition and nutrient acquisition for all crops. In soybean breeding programs, wild soybean alleles have been used successfully to enhance yield and seed composition traits, but have never been investigated to improve root system architecture. Therefore, in this study, high-density single-feature polymorphic markers and simple sequence repeats were used to map quantitative trait loci (QTLs) governing root system architecture in an inter-specific soybean mapping population developed from a cross between Glycine max and Glycine soja.ResultsWild and cultivated soybean both contributed alleles towards significant additive large effect QTLs on chromosome 6 and 7 for a longer total root length and root distribution, respectively. Epistatic effect QTLs were also identified for taproot length, average diameter, and root distribution. These root traits will influence the water and nutrient uptake in soybean. Two cell division-related genes (D type cyclin and auxin efflux carrier protein) with insertion/deletion variations might contribute to the shorter root phenotypes observed in G. soja compared with cultivated soybean. Based on the location of the QTLs and sequence information from a second G. soja accession, three genes (slow anion channel associated 1 like, Auxin responsive NEDD8-activating complex and peroxidase), each with a non-synonymous single nucleotide polymorphism mutation were identified, which may also contribute to changes in root architecture in the cultivated soybean. In addition, Apoptosis inhibitor 5-like on chromosome 7 and slow anion channel associated 1-like on chromosome 15 had epistatic interactions for taproot length QTLs in soybean.ConclusionRare alleles from a G. soja accession are expected to enhance our understanding of the genetic components involved in root architecture traits, and could be combined to improve root system and drought adaptation in soybean.
Archive | 2008
M. A. Saghai Maroof; Dominic M. Tucker; S. A. Tolin
Virus infected soybean can be found in all soybean growing areas of the world. To date, over 67 viruses have been identified that are capable of replicating in the soybean plant. Twenty-seven of the 67 are currently a concern or have the potential to be a problem in soybean production systems (Tolin and Lacy 2004). The most prevalent viruses causing significant crop losses are made of single-stranded, positive-sense RNA from the Potyviridae and Comoviridae families, which this chapter will focus on. Soybean mosaic virus (SMV), which belongs to the Potyviridae, has been known to cause total crop loss (Kwon and Oh 1980) and occurs in all soybean growing areas of the world. Bean pod mottle virus (BPMV) is a member of the Comoviridae family and has increased its geographical distribution throughout the United States and poses a significant risk to soybean growers, particularly those in the North Central and Northern Great Plains states. Together the two viruses, BPMV and SMV, interact synergistically and drastically reduce yield and seed quality compared to each disease alone. Therefore, priority was placed on improving cultivar resistance often through utilization of molecular and genomic approaches. The most common method of controlling SMV in soybean is through development of resistant cultivars often carrying a single hypersensitive resistant (R) gene. However, recent reports of resistance-breaking (RB) stains in Japan and Korea (Choi et al. 2005; Koo et al. 2005; Saruta et al. 2005) shifted breeders and molecular biologists to incorporate durable forms of resistance into cultivars through gene pyramiding or transgenic methods. As SMV is seed borne, seed distribution processes such as those used in germplasm exchange programs, serve to spread the virus to different environments and other areas of the world. Disease management of BPMV through genetic resistance is not possible as no soybean cultivars with resistance to BPMV are commercially available. Only a few experimental transgenic lines conferring resistance against BPMV are available.
Crop Science | 2008
M. A. Saghai Maroof; Soon-Chun Jeong; I. Gunduz; Dominic M. Tucker; G. R. Buss; S. A. Tolin
Crop Science | 2010
Dominic M. Tucker; M. A. Saghai Maroof; Santiago X. Mideros; J. A. Skoneczka; D.A. Nabati; G. R. Buss; Ina Hoeschele; Brett M. Tyler; S. K. St. Martin; Anne E. Dorrance
Crop Science | 2008
Y. Gao; R. M. Biyashev; M. A. Saghai Maroof; Natasha Glover; Dominic M. Tucker; G. R. Buss