Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where G. R. Buss is active.

Publication


Featured researches published by G. R. Buss.


Theoretical and Applied Genetics | 1996

Amplified fragment length polymorphism (AFLP) in soybean: species diversity, inheritance, and near-isogenic line analysis

Peter J. Maughan; M. A. Saghai Maroof; G. R. Buss; G. M. Huestis

Amplified fragment length polymorphism (AFLP) analysis is a PCR-based technique capable of detecting more than 50 independent loci in a single PCR reaction. The objectives of the present study were to: (1) assess the extent of AFLP variation in cultivated (Gycine max L. Merr.) and wild soybean (G. soja Siebold & Zucc.), (2) determine genetic relationships among soybean accessions using AFLP data, and (3) evaluate the usefulness of AFLPs as genetic markers. Fifteen AFLP primer pairs detected a total of 759 AFLP fragments in a sample of 23 accessions of wild and cultivated soybean, with an average of 51 fragments produced per primer pair per accession. Two-hundred and seventy four fragments (36% of the total observed) were polymorphic, among which 127 (17%) were polymorphic in G. max and 237 (31%) were polymorphic in G. soja. F2 segregation analysis of six AFLP fragments indicated that they segregate as stable Mendelian loci. The number of polymorphic loci detected per AFLP primer pair in a sample of 23 accessions ranged from 9 to 27. The AFLP phenotypic diversity values were greater in wild than in cultivated soybean. Cluster and principal component analyses using AFLP data clearly separated G. max and G. soja accessions. Within the G. max group, adapted soybean cultivars were tightly clustered, illustrating the relatively low genetic diversity present in cultivated soybean. AFLP analysis of four soybean near-isogenic lines (NILs) identified three AFLP markers putatively linked to a virus resistance gene from two sources. The capacity of AFLP analysis to detect thousands of independent genetic loci with minimal cost and time requirements makes them an ideal marker for a wide array of genetic investigations.


Genetics | 2004

Recombination Within a Nucleotide-Binding-Site/Leucine-Rich-Repeat Gene Cluster Produces New Variants Conditioning Resistance to Soybean Mosaic Virus in Soybeans

A. J. Hayes; S. C. Jeong; Michael A. Gore; Y. G. Yu; G. R. Buss; S. A. Tolin; M. A. Saghai Maroof

The soybean Rsv1 gene for resistance to soybean mosaic virus (SMV; Potyvirus) has previously been described as a single-locus multi-allelic gene mapping to molecular linkage group (MLG) F. Various Rsv1 alleles condition different responses to the seven (G1–G7) described strains of SMV, including extreme resistance, localized and systemic necrosis, and mosaic symptoms. We describe the cloning of a cluster of NBS-LRR resistance gene candidates from MLG F of the virus-resistant soybean line PI96983 and demonstrate that multiple genes within this cluster interact to condition unique responses to SMV strains. In addition to cloning 3gG2, a strong candidate for the major Rsv1 resistance gene from PI96983, we describe various unique resistant and necrotic reactions coincident with the presence or absence of other members of this gene cluster. Responses of recombinant lines from a high-resolution mapping population of PI96983 (resistant) × Lee 68 (susceptible) demonstrate that more than one gene in this region of the PI96983 chromosome conditions resistance and/or necrosis to SMV. In addition, the soybean cultivars Marshall and Ogden, which carry other previously described Rsv1 alleles, are shown to possess the 3gG2 gene in a NBS-LRR gene cluster background distinct from PI96983. These observations suggest that two or more related non-TIR-NBS-LRR gene products are likely involved in the allelic response of several Rsv1-containing lines to SMV.


Theoretical and Applied Genetics | 1996

Molecular marker analysis of seed-weight : genomic locations, gene action, and evidence for orthologous evolution among three legume species

Peter J. Maughan; M. A. Saghai Maroof; G. R. Buss

The objectives of this study were to use molecular markers to: (1) identify quantitative trait loci (QTL) controlling seed-weight in soybean, (2) characterize the genetic basis of seed-weight expression, and (3) determine whether soybean shares orthologous seed-weight genes with cowpea and/or mung bean. An F2 population was developed between a large-seeded Glycine max breeding line and a small-seeded G. soja plant introduction. DNA samples from 150 F2 individuals were analyzed with 91 polymorphic genetic markers, including RFLPs, RAPDs and SSRs. Seed-weight was analyzed by randomly sampling 100 seeds from each of 150 greenhouse-grown F2 individuals, and their 150 F2∶3 lines, from a replicated field trial. Markers associated with seed-weight were identified using the computer program MapMaker-QTL and a one-way analysis of variance. Three and five markers were significantly associated with seed-weight variation (P<0.01) in the F2 and F2∶3 generations, respectively. Tests for digenic epistasis revealed three significant interactions in both generations. In a combined analysis, these markers and interactions explained 50 and 60% of the phenotypic variation for seed-weight in the F2 and F2∶3 generations, respectively. Comparison of our results in soybean (Glycine) with those previously reported in cowpea and mung bean (Vigna) indicated that soybean and cowpea share an orthologous seed-weight gene. In both species, a genomic region significantly associated with seed-weight spanned the same RFLP markers in the same linkage order. A significant digenic interaction involving this genomic region was conserved in all three species. These results suggest that the exploitation of “comparative QTL mapping” is an invaluable tool for quantitative geneticists working with poorly characterized plant systems.


Theoretical and Applied Genetics | 1995

Genetic characteristics of two genes for resistance to soybean mosaic virus in PI486355 soybean

G. Ma; P. Chen; G. R. Buss; Sue A. Tolin

Soybean [Glycine max (L.) Merr.] PI486355 is resistant to all the identified strains of soybean mosaic virus (SMV) and possesses two independently inherited resistance genes. To characterize the two genes, PI486355 was crossed with the susceptible cultivars ‘Lee 68’ and ‘Essex’ and with cultivars ‘Ogden’ and ‘Marshall’, which are resistant to SMV-G1 but systemically necrotic to SMV-G7. The F2 populations and F2∶3 progenies from these crosses were inoculated with SMV-G7 in the greenhouse. The two resistance genes were separated in two F3∶4 lines, ‘LR1’ and ‘LR2’, derived from Essex x PI486355. F1 individuals from the crosses of LR1 and LR2 with Lee 68, Ogden, and ‘York’ were tested with SMV-G7 in the greenhouse; the F2 populations were tested with SMV-G1 and G7. The results revealed that expression of the gene in LR1 is gene-dosage dependent, with the homozygotes conferring resistance but the heterozygotes showing systemic necrosis to SMV-G7. This gene was shown to be an allele of the Rsv1 locus and was designated as Rsv1-s. It is the only allele identified so far at the Rsv1 locus which confers resistance to SMV-G7. Rsv1-s also confers resistance to SMV-G1 through G4, but results in systemic necrosis with SMV-G5 and G6. The gene in LR2 confers resistance to strains SMV-G1 through G7 and exhibits complete dominance. It appears to be epistatic to genes at the Rsv1 locus, inhibiting the expression of the systemic necrosis conditioned by the Rsv1 alleles. SMV-G7 induced a pin-point necrotic reaction on the inoculated primary leaves in LR1 but not in LR2. The unique genetic features of the two resistance genes from PI486355 will facilitate their proper use and identification in breeding and contribute to a better understanding of the interaction of SMV strains with soybean resistance genes.


Phytopathology | 2004

Genetic and Phenotypic Analysis of Soybean mosaic virus Resistance in PI 88788 Soybean

I. Gunduz; G. R. Buss; Pengyin Chen; Sue A. Tolin

ABSTRACT Resistance to Soybean mosaic virus (SMV) was identified in PI 88788 soybean, a germ plasm accession from China that is used widely as a source of resistance to soybean cyst nematode. Strains SMV-G1 through -G7 infected the inoculated leaves of PI 88788 but were not detected in upper, noninoculated trifoliolate leaves. Inheritance of resistance was determined by inoculating progenies of crosses of PI 88788 with susceptible cvs. Essex and Lee 68 with SMV strains G1 and G7. Allelomorphic relationships with known genes for resistance to SMV were tested in crosses with the resistant genotypes PI 96983, L29, and V94-5152, possessing Rsv1, Rsv3, and Rsv4 genes, respectively. Data analyses showed that resistance in PI 88788 to SMV-G1 is controlled by a single, partially dominant gene; however, to SMV-G7, the same gene was completely dominant. The PI 88788 gene was independent of the Rsv1 and Rsv3 loci, but allelic to Rsv4 in V94-5152. Expression of the Rsv4 gene in PI 88788 resulted in a reduced number of infection sites and restricted short- and long-distance movement of virus, rather than hypersensitivity. A unique late susceptible phenotype was strongly associated with heterozygosity. This gene has potential value for use in gene pyramiding to achieve resistance to several SMV strains, as well as for rate-reducing resistance.


Theoretical and Applied Genetics | 1996

Divergence and allelomorphic relationship of a soybean virus resistance gene based on tightly linked DNA microsatellite and RFLP markers

Y. G. Yu; M. A. Saghai Maroof; G. R. Buss

The use of genetically diverse resistance sources is important in breeding for durable disease resistance. Detection and evaluation of resistance genes by conventional inheritance experiments, however, often require laborious screening and genetic testing. In the present study, a marker-assisted screening for resistance sources was initiated in soybean [Glycine max (L.) Merr] using one DNA microsatellite and two RFLP markers tightly linked to a soybean mosaic virus (SMV) resistance gene (Rsv1). The three marker loci were used to screen 67 diverse soybean cultivars, breeding lines, and plant introductions. Five variants were found at the microsatellite locus (HSP176L), and the two RFLP loci (pA186 and pK644a) near Rsv1 show a remarkably higher level of restriction polymorphism than Rsv1-independent RFLP loci. Several specific variants at the three marker loci were found to be correlated with virus resistance, among which HSP176L-2 can be detected by PCR, thus may be useful for germplasm screening. The grouping of the 67 accessions according to their multilocus marker variants agrees with the available pedigree information. When all, or most, of the cultivars within a given group with the same Rsv1-linked marker variant are resistant, their SMV resistance is most likely conferred by Rsv1. These putatively Rsv1-carrying groups contain a total of 38 SMV-resistant lines including six differential cultivars that are known to carry Rsv1. The remaining seven resistant accessions (Columbia, Holladay, Peking, Virginia, FFR-471, PI 507403, and PI 556949) do not carry resistance marker variants, and at least some of them could be sources of resistance genes independent of Rsv1.


Canadian Journal of Plant Pathology-revue Canadienne De Phytopathologie | 2004

Establishment and maintenance of Soybean Mosaic Virus in soybean callus culture

Pengyin Chen; G. R. Buss; Richard E. Veilleux; Sue A. Tolin

Susceptibility to inoculation with Soybean mosaic virus (SMV) and virus activity were investigated in soybean callus cultures growing in vitro. Excised hypocotyls of susceptible soybean, Glycine max (L.) Merr. ‘Essex’, were cultured in Msoy medium in the light at 25 °C. Established calluses were inoculated with SMV in vitro by a soak–prick method. In addition, SMV-infected leaves of soybean ‘Lee 68’ were surface sterilized, excised, and placed on callus-inducing medium. Calluses infected with SMV initiated by either method grew in vitro as well as calluses from uninfected tissues. Callus cultures turned brownish yellow after 6–8 weeks, when the media became depleted of nutrients. However, callus with an active SMV infection could be maintained by regular subculture to fresh medium. Longevity of SMV–callus cultures was increased by storage at 10–15 °C, thus reducing the frequency of transfers. The virus was detected in infected calluses by serological tests. Infectivity assays confirmed the presence and viability of SMV in callus cultures. Most callus cultures induced directly from infected leaves retained virus and high infectivity, whereas infective cultures from in vitro inoculated hypocotyls appeared to decrease in number and infectivity with repeated subcultures. However, selected infective cultures retained high infectivity after 10 successive transfers over a period of 20 months. These results demonstrate that SMV can be cultured and maintained active in callus cultures in vitro


Phytopathology | 1994

RFLP and microsatellite mapping of a gene for soybean mosaic virus resistance

Y. G. Yu; M. A. Saghai Maroof; G. R. Buss; Peter J. Maughan; S. A. Tolin


Genome | 1995

Microsatellite and amplified sequence length polymorphisms in cultivated and wild soybean.

Peter J. Maughan; M. A. Saghai Maroof; G. R. Buss


Crop Science | 2000

Molecular marker mapping of RSV4, a gene conferring resistance to all known strains of soybean mosaic virus.

Alec J. Hayes; Guorong Ma; G. R. Buss; M. A. Saghai Maroof

Collaboration


Dive into the G. R. Buss's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge