Dominic Orth
Queensland University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dominic Orth.
PLOS ONE | 2013
Dominic Orth; Keith Davids; Jon Wheat; Ludovic Seifert; Jarmo Liukkonen; Timo Jaakkola; Derek Ashford; Graham K. Kerr
Simple deformation of the skin surface with textured materials can improve human perceptual-motor performance. The implications of these findings are inexpensive, adaptable and easily integrated clothing, equipment and tools for improving perceptual-motor functionality. However, some clarification is needed because mixed results have been reported in the literature, highlighting positive, absent and/or negative effects of added texture on measures of perceptual-motor performance. Therefore the aim of this study was to evaluate the efficacy of textured materials for enhancing perceptual-motor functionality. The systematic review uncovered two variables suitable for sub-group analysis within and between studies: participant age (groupings were 18–51 years and 64.7–79.4 years) and experimental task (upright balance and walking). Evaluation of studies that observed texture effects during upright balance tasks, uncovered two additional candidate sub-groups for future work: vision (eyes open and eyes closed) and stability (stable and unstable). Meta-analysis (random effects) revealed that young participants improve performance by a small to moderate amount in upright balance tasks with added texture (SMD = 0.28, 95%CI = 0.46–0.09, Z = 2.99, P = 0.001; Tau2 = 0.02; Chi2 = 9.87, df = 6, P = 0.13; I2 = 39.22). Significant heterogeneity was found in, the overall effect of texture: Tau2 = 0.13; Chi2 = 130.71, df = 26, P<0.0001; I2 = 85.98%, pooled samples in upright balance tasks: Tau2 = 0.09; Chi2 = 101.57, df = 13, P<0.001; I2 = 72.67%, and in elderly in upright balance tasks: Tau2 = 0.16; Chi2 = 39.42, df = 5, P<0.001; I2 = 83.05%. No effect was shown for walking tasks: Tau2 = 0.00; Chi2 = 3.45, df = 4, P = 0.27, I2 = 22.99%. Data provides unequivocal support for utilizing textured materials in young healthy populations for improving perceptual-motor performance. Future research is needed in young healthy populations under conditions where visual and proprioceptive information is challenged, as in high-speed movements, or where use of equipment mediates the performer-environment interaction or where dysfunctional information sources ‘compete’ for attention. In elderly and ailing populations data suggests further research is required to better understand contexts where texture can facilitate improved perceptual-motor performance.
Human Movement Science | 2016
Ludovic Seifert; Léo Wattebled; Dominic Orth; Maxime L'Hermette; Jérémie Boulanger; Keith Davids
Using an ecological dynamics framework, this study investigated the generality and specificity of skill transfer processes in organisation of perception and action using climbing as a task vehicle. Fluency of hip trajectory and orientation was assessed using normalized jerk coefficients exhibited by participants as they adapted perception and action under varying environmental constraints. Twelve recreational climbers were divided into two groups: one completing a 10-m high route on an indoor climbing wall; a second undertaking a 10-m high route on an icefall in a top-rope condition. We maintained the same level of difficulty between these two performance environments. An inertial measurement unit was attached each climbers hips to collect 3D acceleration and 3D orientation data to compute jerk coefficient values. Video footage was used to record the ratio of exploratory/performatory movements. Results showed higher jerk coefficient values and number of exploratory movements for performance on the icefall route, perhaps due to greater functional complexity in perception and action required when climbing icefalls, which involves use of specific tools for anchorage. Findings demonstrated how individuals solve different motor problems, exploiting positive general transfer processes enabling participants to explore the pick-up of information for the perception of affordances specific to icefall climbing.
Sports Medicine | 2016
Dominic Orth; Keith Davids; Ludovic Seifert
BackgroundClimbing is a physical activity and sport involving many subdisciplines. Minimization of prolonged pauses, use of a relatively simple path through a route and smooth transitions between movements broadly define skilled coordination in climbing.ObjectivesTo provide an overview of the constraints on skilled coordination in climbing and to explore future directions in this emerging field.MethodsA systematic literature review was conducted in 2014 and retrieved studies reporting perceptual and movement data during climbing tasks. To be eligible for the qualitative synthesis, studies were required to report perceptual or movement data during climbing tasks graded for difficulty.ResultsQualitative synthesis of 42 studies was carried out, showing that skilled coordination in climbing is underpinned by superior perception of climbing opportunities; optimization of spatial–temporal features pertaining to body-to-wall coordination, the climb trajectory and hand-to-hold surface contact; and minimization of exploratory behaviour. Improvements in skilled coordination due to practice are related to task novelty and the difficulty of the climbing route relative to the individual’s ability level.ConclusionPerceptual and motor adaptations that improve skilled coordination are highly significant for improving the climbing ability level. Elite climbers exhibit advantages in detection and use of climbing opportunities when visually inspecting a route from the ground and when physically moving though a route. However, the need to provide clear guidelines on how to improve climbing skill arises from uncertainties regarding the impacts of different practice interventions on learning and transfer.
Human Movement Science | 2017
Dominic Orth; Keith Davids; Ludovic Seifert
Previous investigations have shown that inducing meta-stability in behavior can be achieved by overlapping affordances through constraint manipulation, allowing cooperative and competitive tendencies to functionally coexist. The purpose of this paper was to test a number of conditions applying these design principles on performance during skills practice and transfer. Of additional interest, was whether the existing skill level interacted with the environmental properties of the experimental tasks (varying indoor climbing routes). Two skill groups practised on three routes per session over four separate sessions. At the end of the final session, climbers undertook a transfer test. Routes, matched for difficulty, were manipulated in terms of hand-hold design. Route-1 and Route-2 were designed with holds with a single graspable edge, aligned entirely parallel or perpendicular to the ground plane respectively. Route-3 had at each hold, two graspable edges (one parallel and one perpendicular to the ground plane). Behavioral exploration at the hip and hands were largest under the metastable condition (Route-3). Skill level also interacted with route properties during practice and influenced transfer. Data suggest meta-stability induces exploratory behaviors. Less skilled individuals explore both hand and hip levels, whereas, more experienced climbers explore at the hip level.
Extreme Sports Medicine | 2017
Ludovic Seifert; Dominic Orth; Chris Button; Eric Brymer; Keith Davids
Uncertainty in extreme sports performance environments, like rock and ice climbing, provides considerable psycho-emotional and physiological demands which challenge the acquisition of perceptual–motor skills. An ecological dynamics theoretical framework adopts concepts and tools of nonlinear dynamics and ecological psychology to investigate and model the relationships that emerge in extreme sports between athletes and their performance environments. In this relation, the interactions of athletes with key objects, surfaces, events and significant others during a sport like climbing emerge from interdependent personal, task and environmental constraints on performance. Performance behaviours emerge through the continuous and active exploration of environmental properties by individual athletes. Properties of rock cliffs, icefalls and mountains provide a high level of uncertainty due to continuous weather-driven changes. Their unpredictability signifies that performance may be considered as an ongoing coadaptation of climber’s behaviours to dynamically changing, interacting constraints, individually perceived and encountered. In this chapter, we consider the continuous interactions between climbers and their environment to understand how they can be coached to perceive key environmental properties when climbing and adapt their behaviours towards achieving performance goals.
Sports Technology | 2014
Ludovic Seifert; Vladislavs Dovgalecs; Jérémie Boulanger; Dominic Orth; Romain Hérault; Keith Davids
The aim of this study was to propose a method for full-body movement pattern recognition in climbing, by computing the 3D unitary vector of the four limbs and pelvis during performance. One climber with an intermediate skill level traversed two easy routes of similar rates of difficulty (5c difficulty on French scale), 10m in height under top-rope conditions. The first route was simply designed to allow horizontal edge-hold grasping, while the second route was designed with more complexity to allow both horizontal and vertical edge-hold grasping. Five inertial measurement units (IMUs) were attached to the pelvis, both feet and forearms to analyse the 3D unitary vector of each limb and pelvis. Cluster analysis was performed to detect the number of clusters that emerged from coordination of the four limbs and pelvis during climbing performance. Analysis revealed 22 clusters with 11 clusters unique across the two routes. Six clusters were unique to the simple hold design route and five clusters emerged only in the complex hold design route. We conclude that clustering supported identification of full-body orientations during traversal, representing a level of analysis that can provide useful information for performance monitoring in climbing.
Frontiers in Psychology | 2017
Dominic Orth; Graham K. Kerr; Keith Davids; Ludovic Seifert
In this review of research on climbing expertise, we focus on different measures of climbing performance, including spatiotemporal measures related to fluency and activity states (i.e., discrete actions), adopted by climbers for achieving overall performance goals of getting to the end of a route efficiently and safely. Currently, a broad range of variables have been reported, however, many of these fail to capture how climbers adapt to a route whilst climbing. We argue that spatiotemporal measures should be considered concurrently with evaluation of activity states (such as reaching or exploring) in order gain a more comprehensive picture of how climbers successfully adapt to a route. Spatial and temporal movement measures taken at the hip are a traditional means of assessing efficiency of climbing behaviors. More recently, performatory and exploratory actions of the limbs have been used in combination with spatiotemporal indicators, highlighting the influence of limb states on climbing efficiency and skill transfer. However, only a few studies have attempted to combine spatiotemporal and activity state measures taken during route climbing. This review brings together existing approaches for observing climbing skill at performance outcome (i.e., spatiotemporal assessments) and process (i.e., limb activity states) levels of analysis. Skill level is associated with a spatially efficient route progression and lower levels of immobility. However, more difficult hold architecture designs require significantly greater mobility and more complex movement patterning to maintain performance. Different forms of functional, or goal-supportive, movement variability, including active recovery and hold exploration, have been implicated as important adaptations to physiological and environmental dynamics that emerge during the act of climbing. Indeed, recently it has also been shown that, when climbing on new routes, efficient exploration can improve the transfer of skill. This review provides new insights into how climbing performance and related actions can be quantified to better capture the functional role of movement variability.
Archive | 2015
Keith Davids; Duarte Araújo; Ludovic Seifert; Dominic Orth
Sports Technology | 2014
Dominic Orth; Keith Davids; Ludovic Seifert
Frontiers in Psychology | 2018
Ludovic Seifert; Dominic Orth; Bruno Mantel; Jérémie Boulanger; Romain Hérault; Matt Dicks