Dominik Lausch
Leipzig University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dominik Lausch.
Journal of Applied Physics | 2011
Otwin Breitenstein; Jan S. Bauer; Karsten Bothe; Wolfram Kwapil; Dominik Lausch; Uwe Rau; Jan Schmidt; Matthias Schneemann; Martin C. Schubert; J.-M. Wagner; Wilhelm Warta
Extensive investigations on industrial multicrystalline silicon solar cells have shown that, for standard 1 Ω cm material, acid-etched texturization, and in absence of strong ohmic shunts, there are three different types of breakdown appearing in different reverse bias ranges. Between −4 and −9 V there is early breakdown (type 1), which is due to Al contamination of the surface. Between −9 and −13 V defect-induced breakdown (type 2) dominates, which is due to metal-containing precipitates lying within recombination-active grain boundaries. Beyond −13 V we may find in addition avalanche breakdown (type 3) at etch pits, which is characterized by a steep slope of the I-V characteristic, avalanche carrier multiplication by impact ionization, and a negative temperature coefficient of the reverse current. If instead of acid-etching alkaline-etching is used, all these breakdown classes also appear, but their onset voltage is enlarged by several volts. Also for cells made from upgraded metallurgical grade materia...
IEEE Journal of Photovoltaics | 2014
Dominik Lausch; Volker Naumann; Otwin Breitenstein; Jan S. Bauer; Andreas Graff; Joerg Bagdahn; Christian Hagendorf
In recent years, a detrimental degradation mechanism of solar cells in large photovoltaic fields called potential-induced degradation (PID) has been intensively investigated and discussed. Here, the module efficiency is decreasing down to a fractional part of their original efficiency. In this study, we introduce a PID test at a solar-cell level and for individual module components applicable as a tool for process control in industries and root cause analyses in science departments. Using the proposed method, one example analysis of a solar cell that is degraded by the PID tester is presented. It is shown that PID of the shunting type influences both the parallel resistance (Rp) and the depletion region recombination behavior (J02) of the solar cell. Increased recombination in the depletion region is caused by Na decorated stacking faults crossing the depletion region. This strongly influences recombination behavior in the depletion region, leading to an increased J02 and an ideality factor n2 > 2. However, the defects leave the base of the solar cell primarily unaffected, and hence, J01 recombination remains rather low. Based on these findings, a model for the shunting and the increased depletion region recombination behavior is discussed.
Energy and Environmental Science | 2017
Wei Luo; Yong Sheng Khoo; Peter Hacke; Volker Naumann; Dominik Lausch; Steven P. Harvey; Jai Prakash Singh; Jing Chai; Yan Wang; Armin G. Aberle; Seeram Ramakrishna
Potential-induced degradation (PID) has received considerable attention in recent years due to its detrimental impact on photovoltaic (PV) module performance under field conditions. Both crystalline silicon (c-Si) and thin-film PV modules are susceptible to PID. While extensive studies have already been conducted in this area, the understanding of the PID phenomena is still incomplete and it remains a major problem in the PV industry. Herein, a critical review of the available literature is given to serve as a one-stop source for understanding the current status of PID research. This paper also aims to provide an overview of future research paths to address PID-related issues. This paper consists of three parts. In the first part, the modelling of leakage current paths in the module package is discussed. The PID mechanisms in both c-Si and thin-film PV modules are also comprehensively reviewed. The second part summarizes various test methods to evaluate PV modules for PID. The last part focuses on studies related to PID in the omnipresent p-type c-Si PV modules. The dependence of temperature, humidity and voltage on the progression of PID is examined. Preventive measures against PID at the cell, module and system levels are illustrated. Moreover, PID recovery in standard p-type c-Si PV modules is also studied. Most of the findings from p-type c-Si PV modules are also applicable to other PV module technologies.
Applied Physics Letters | 2010
Dominik Lausch; Kai Petter; Ronny Bakowskie; C. Czekalla; J. Lenzner; Holger von Wenckstern; Marius Grundmann
The local breakdown of commercial silicon solar cells occurring at reverse voltages of only 3–4 V has been investigated by means of current-voltage measurements, dark lock-in thermography, and reverse-biased electroluminescence (ReBEL) with a spatial resolution on the micrometer-scale. It is shown that the origin of the local breakdown (so-called type I) can be traced back to a contamination of the wafer surface with Al particles prior to the phosphorous diffusion step. A model is presented explaining that the spectral maximum of ReBEL is within the visible range.
Advanced Materials | 2013
Xiaopeng Li; Yanjun Xiao; Jin Ho Bang; Dominik Lausch; Sylke Meyer; P.-T. Miclea; Jin-Young Jung; Stefan L. Schweizer; Jung-Ho Lee; Ralf B. Wehrspohn
Through metal-assisted chemical etching (MaCE), superior purification of dirty Si is observed, from 99.74 to 99.9884% for metallurgical Si and from 99.999772 to 99.999899% for upgraded metallurgical Si. In addition, large area of silicon nanowires (SiNW) are fabricated. The purification effect induces a ∼35% increase in photocurrent for SiNW based photoelectrochemical cell.
Journal of Applied Physics | 2013
A. Hähnel; Jan S. Bauer; Horst Blumtritt; Otwin Breitenstein; Dominik Lausch; Wolfram Kwapil
It had been shown already earlier by X-ray microanalysis that, in positions of defect-induced junction breakdown in industrial multicrystalline (mc) silicon solar cells, iron-containing precipitates may exist. However, the nature of these precipitates was unknown so far. Here, in such positions, scanning transmission electron microscopy was performed after defect-controlled focused ion beam preparation. First of all, the defect site was localized by microscopic reverse-bias electroluminescence imaging. The high accuracy of following FIB target preparation (<0.1 μm necessary) was obtained by both, electron beam-induced current imaging and secondary electron material contrast observation during the slice-by-slice milling of the TEM specimen. By nano-beam electron diffraction (NBED) and energy dispersive spectroscopy, the iron-containing precipitates were identified as α-type FeSi2 needles, about 30 nm in diameter and several μm in length. The FeSi2 needles show preferential orientation relationships to the ...
Solid State Phenomena | 2011
Dominik Lausch; Ronny Bakowskie; M. Lorenz; S. Schweizer; Kai Petter; Christian Hagendorf
In this contribution a classification of recombination active defects in multicrystalline silicon solar cells made from electronic grade (eg) and upgraded metallurgical grade (umg) silicon feedstock is introduced. On a macroscopic scale the classification is performed by using forward and reversed biased electroluminescence imaging (EL / ReBEL) and imaging of sub-band defect luminescence (ELsub). The luminescence behavior due to structural defects already present in the wafer can be divided into two groups based on their recombination and prebreakdown behavior. As a first step towards a more detailed analysis of the cause for these differences, the classification was also performed on microscopic scale. For this ReBEL and ELsub was performed under an optical microscope (µReBEL/µELsub) and EL was replaced by Electron Beam Induced Current (EBIC). The defect types observed on a macroscopic scale could also be observed on a microscopic scale; however, a third defect type had to be introduced. Finally we propose a qualitative model for the different classified types of recombination active defect structures that can explain the observed recombination and prebreakdown behavior.
Journal of Applied Physics | 2013
Dominik Lausch; M. Gläser; Christian Hagendorf
In this contribution, a new method to determine the crystal orientation with the example of chemical treated silicon wafers by means of optical microscopy has been demonstrated. The introduced procedure represents an easy method to obtain all relevant parameters to describe the crystal structure of the investigated material, i.e., the crystal grain orientation and the grain boundary character. The chemical treatment is a standard mono-texture for solar cells, well known in the solar industry. In general, this concept can also be applied to other crystalline materials, i.e., GaAs, SiC, etc., the only thing that needs to be adjusted is the texturing method to reveal specific crystal planes and the calculation model. In conclusion, an application of this method is shown with the example of the defect classification of recombination active defects in mc-Si solar cell. The introduced method demonstrates a simple and quick opportunity to improve the crystallization process and the quality of electronic devices ...
Journal of Applied Physics | 2017
Maria Gaudig; Jens Hirsch; Volker Naumann; Martina Werner; Stephan Großer; Christian Hagendorf; Norbert Bernhard; Dominik Lausch
The influence of the SiOxFy selfmasking process on the formation of black-Silicon (b-Si) textures by maskless SF6/O2 plasma etching is of great interest with regard to the optimization of the texturing process for highly antireflective silicon. For that reason, the elemental composition of plasma textured silicon surfaces is analyzed by transmission electron microscopy and X-ray photoelectron spectroscopy. The chemical composition of a fluorine containing oxide layer on top of the surface was confirmed and determined quantitatively. A strongly reduced F content was found after ambient air exposure. A qualitative model of the chemical and physical processes caused by maskless plasma texturing was developed to explain the observed experimental results. The decrease in the F content is assumed to be caused by hydrolysis of F by air moisture, resulting in a successive desorption of HF and transformation of SiOxFy to silicon oxide.
Journal of Applied Physics | 2017
Maksym Plakhotnyuk; Maria Gaudig; Rasmus Schmidt Davidsen; Jonas Michael Lindhard; Jens Hirsch; Dominik Lausch; Michael Stenbæk Schmidt; Eugen Stamate; Ole Hansen
Black silicon (bSi) is promising for integration into silicon solar cell fabrication flow due to its excellent light trapping and low reflectance, and a continuously improving passivation. However, intensive ion bombardment during the reactive ion etching used to fabricate bSi induces surface damage that causes significant recombination. Here, we present a process optimization strategy for bSi, where surface damage is reduced and surface passivation is improved while excellent light trapping and low reflectance are maintained. We demonstrate that reduction of the capacitively coupled plasma power, during reactive ion etching at non-cryogenic temperature (−20 °C), preserves the reflectivity below 1% and improves the effective minority carrier lifetime due to reduced ion energy. We investigate the effect of the etching process on the surface morphology, light trapping, reflectance, transmittance, and effective lifetime of bSi. Additional surface passivation using atomic layer deposition of Al2O3 significant...