Dominik M. Duelli
Rosalind Franklin University of Medicine and Science
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dominik M. Duelli.
PLOS ONE | 2010
Lucy Pigati; Sree C. Yaddanapudi; Ravi Iyengar; Dong-Ja Kim; Steven A. Hearn; David N. Danforth; Michelle L. Hastings; Dominik M. Duelli
MicroRNAs (miRNAs) in body fluids are candidate diagnostics for a variety of conditions and diseases, including breast cancer. One premise for using extracellular miRNAs to diagnose disease is the notion that the abundance of the miRNAs in body fluids reflects their abundance in the abnormal cells causing the disease. As a result, the search for such diagnostics in body fluids has focused on miRNAs that are abundant in the cells of origin. Here we report that released miRNAs do not necessarily reflect the abundance of miRNA in the cell of origin. We find that release of miRNAs from cells into blood, milk and ductal fluids is selective and that the selection of released miRNAs may correlate with malignancy. In particular, the bulk of miR-451 and miR-1246 produced by malignant mammary epithelial cells was released, but the majority of these miRNAs produced by non-malignant mammary epithelial cells was retained. Our findings suggest the existence of a cellular selection mechanism for miRNA release and indicate that the extracellular and cellular miRNA profiles differ. This selective release of miRNAs is an important consideration for the identification of circulating miRNAs as biomarkers of disease.
Cancer Cell | 2003
Dominik M. Duelli; Yuri Lazebnik
The recent findings that cell fusion may be involved in stem cell differentiation (Medvinsky and Smith, 2003) raise a possibility that cell fusion has undiscovered functions, some of which can perhaps be found by revisiting the old ideas that cell fusion can promote disease, especially cancer. Cell fusion is a process in which two or more cells become one by merging their plasma membranes. The ability of a cell to fuse to other cells is referred to as fusogenicity. The progeny of cell fusion are known as hybrids. Perhaps the best-known hybrids are hybridomas, which are made by fusing myeloma cells with lymphocytes to produce monoclonal antibodies. Although cells can be easily fused in the laboratory using readily available chemicals, cell fusion in live organisms appears to be a complex, poorly understood, multistep process that involves cell-cell recognition, cell adhesion, and membrane fusion (reviewed in Hernandez et al., 1996).
Nucleic Acids Research | 2012
Mallory A. Havens; Ashley A. Reich; Dominik M. Duelli; Michelle L. Hastings
Canonical microRNA biogenesis requires the Microprocessor components, Drosha and DGCR8, to generate precursor-miRNA, and Dicer to form mature miRNA. The Microprocessor is not required for processing of some miRNAs, including mirtrons, in which spliceosome-excised introns are direct Dicer substrates. In this study, we examine the processing of putative human mirtrons and demonstrate that although some are splicing-dependent, as expected, the predicted mirtrons, miR-1225 and miR-1228, are produced in the absence of splicing. Remarkably, knockout cell lines and knockdown experiments demonstrated that biogenesis of these splicing-independent mirtron-like miRNAs, termed ‘simtrons’, does not require the canonical miRNA biogenesis components, DGCR8, Dicer, Exportin-5 or Argonaute 2. However, simtron biogenesis was reduced by expression of a dominant negative form of Drosha. Simtrons are bound by Drosha and processed in vitro in a Drosha-dependent manner. Both simtrons and mirtrons function in silencing of target transcripts and are found in the RISC complex as demonstrated by their interaction with Argonaute proteins. These findings reveal a non-canonical miRNA biogenesis pathway that can produce functional regulatory RNAs.
Nature Reviews Cancer | 2007
Dominik M. Duelli; Yuri Lazebnik
The ability to fuse cells is shared by many viruses, including common human pathogens and several endogenous viruses. Here we will discuss how cell fusion can link viruses to cancer, what types of cancers it can affect, how the existence of this link can be tested and how the hypotheses that we propose might affect the search for human oncogenic viruses. In particular, we will focus on the ability of cell fusion that is caused by viruses to induce chromosomal instability, a common affliction of cancer cells that has been thought to underlie the malignant properties of cancerous tumours.
The Journal of Molecular Diagnostics | 2012
Dong Ja Kim; Sarah D. Linnstaedt; Jaime Palma; Joon Cheol Park; Evangelos Ntrivalas; Joanne Kwak-Kim; Alice Gilman-Sachs; Kenneth D. Beaman; Michelle L. Hastings; Jeffrey N. Martin; Dominik M. Duelli
Circulating microRNAs (miRNAs) have emerged as candidate biomarkers of various diseases and conditions including malignancy and pregnancy. This approach requires sensitive and accurate quantitation of miRNA concentrations in body fluids. Herein we report that enzyme-based miRNA quantitation, which is currently the mainstream approach for identifying differences in miRNA abundance among samples, is skewed by endogenous serum factors that co-purify with miRNAs and anticoagulant agents used during collection. Of importance, different miRNAs were affected to varying extent among patient samples. By developing measures to overcome these interfering activities, we increased the accuracy, and improved the sensitivity of miRNA detection up to 30-fold. Overall, the present study outlines key factors that prevent accurate miRNA quantitation in body fluids and provides approaches that enable faithful quantitation of miRNA abundance in body fluids.
Nature Medicine | 2013
Jennifer J. Lentz; Francine M. Jodelka; Anthony J. Hinrich; Kate E. McCaffrey; Hamilton E. Farris; Matthew J Spalitta; Nicolas G. Bazan; Dominik M. Duelli; Frank Rigo; Michelle L. Hastings
Hearing impairment is the most common sensory disorder, with congenital hearing impairment present in approximately 1 in 1,000 newborns. Hereditary deafness is often mediated by the improper development or degeneration of cochlear hair cells. Until now, it was not known whether such congenital failures could be mitigated by therapeutic intervention. Here we show that hearing and vestibular function can be rescued in a mouse model of human hereditary deafness. An antisense oligonucleotide (ASO) was used to correct defective pre-mRNA splicing of transcripts from the USH1C gene with the c.216G>A mutation, which causes human Usher syndrome, the leading genetic cause of combined deafness and blindness. Treatment of neonatal mice with a single systemic dose of ASO partially corrects Ush1c c.216G>A splicing, increases protein expression, improves stereocilia organization in the cochlea, and rescues cochlear hair cells, vestibular function and low-frequency hearing in mice. These effects were sustained for several months, providing evidence that congenital deafness can be effectively overcome by treatment early in development to correct gene expression and demonstrating the therapeutic potential of ASOs in the treatment of deafness.
Wiley Interdisciplinary Reviews - Rna | 2013
Mallory A. Havens; Dominik M. Duelli; Michelle L. Hastings
Splicing of pre‐messenger RNA into mature messenger RNA is an essential step for the expression of most genes in higher eukaryotes. Defects in this process typically affect cellular function and can have pathological consequences. Many human genetic diseases are caused by mutations that cause splicing defects. Furthermore, a number of diseases are associated with splicing defects that are not attributed to overt mutations. Targeting splicing directly to correct disease‐associated aberrant splicing is a logical approach to therapy. Splicing is a favorable intervention point for disease therapeutics, because it is an early step in gene expression and does not alter the genome. Significant advances have been made in the development of approaches to manipulate splicing for therapy. Splicing can be manipulated with a number of tools including antisense oligonucleotides, modified small nuclear RNAs (snRNAs), trans‐splicing, and small molecule compounds, all of which have been used to increase specific alternatively spliced isoforms or to correct aberrant gene expression resulting from gene mutations that alter splicing. Here we describe clinically relevant splicing defects in disease states, the current tools used to target and alter splicing, specific mutations and diseases that are being targeted using splice‐modulating approaches, and emerging therapeutics. WIREs RNA 2013, 4:247–266. doi: 10.1002/wrna.1158
PLOS ONE | 2007
Michelle L. Hastings; Eric Allemand; Dominik M. Duelli; Michael P. Myers; Adrian R. Krainer
Pre-mRNA splicing is a crucial step in gene expression, and accurate recognition of splice sites is an essential part of this process. Splice sites with weak matches to the consensus sequences are common, though it is not clear how such sites are efficiently utilized. Using an in vitro splicing-complementation approach, we identified PUF60 as a factor that promotes splicing of an intron with a weak 3′ splice-site. PUF60 has homology to U2AF65, a general splicing factor that facilitates 3′ splice-site recognition at the early stages of spliceosome assembly. We demonstrate that PUF60 can functionally substitute for U2AF65 in vitro, but splicing is strongly stimulated by the presence of both proteins. Reduction of either PUF60 or U2AF65 in cells alters the splicing pattern of endogenous transcripts, consistent with the idea that regulation of PUF60 and U2AF65 levels can dictate alternative splicing patterns. Our results indicate that recognition of 3′ splice sites involves different U2AF-like molecules, and that modulation of these general splicing factors can have profound effects on splicing.
Journal of Cell Biology | 2005
Dominik M. Duelli; Stephen Hearn; Michael P. Myers; Yuri Lazebnik
Amodel that explains both the origin and sporadic nature of cancer argues that cancer cells are a chance result of events that cause genomic and epigenetic variability. The prevailing view is that these events are mutations that affect chromosome segregation or stability. However, genomic and epigenetic variability is also triggered by cell fusion, which is often caused by viruses. Yet, cells fused by viruses are considered harmless because they die. We provide evidence that a primate virus uses both viral and exosomal proteins involved in cell fusion to produce transformed proliferating human cells. Although normal cells indeed fail to proliferate after fusion, expression of an oncogene or a mutated tumor suppressor p53 in just one of the fusion partners is sufficient to produce heterogeneous progeny. We also show that this virus can produce viable oncogenically transformed cells by fusing cells that are otherwise destined to die. Therefore, we argue that viruses can contribute to carcinogenesis by fusing cells.
Human Molecular Genetics | 2010
Francine M. Jodelka; Allison D. Ebert; Dominik M. Duelli; Michelle L. Hastings
Spinal muscular atrophy (SMA) is a neurological disorder characterized by motor neuron degeneration and progressive muscle paralysis. The disease is caused by a reduction in survival of motor neuron (SMN) protein resulting from homozygous deletion of the SMN1 gene. SMN protein is also encoded by SMN2. However, splicing of SMN2 exon 7 is defective, and consequently, the majority of the transcripts produce a truncated, unstable protein. SMN protein itself has a role in splicing. The protein is required for the biogenesis of spliceosomal snRNPs, which are essential components of the splicing reaction. We now show that SMN protein abundance affects the splicing of SMN2 exon 7, revealing a feedback loop inSMN expression. The reduced SMN protein concentration observed in SMA samples and in cells depleted of SMN correlates with a decrease in cellular snRNA levels and a decrease in SMN2 exon 7 splicing. Furthermore, altering the relative abundance or activity of individual snRNPs has distinct effects on exon 7 splicing, demonstrating that core spliceosomal snRNPs influence SMN2 alternative splicing. Our results identify a feedback loop in SMN expression by which low SMN protein levels exacerbate SMN exon 7 skipping, leading to a further reduction in SMN protein. These results imply that a modest increase in SMN protein abundance may cause a disproportionately large increase in SMN expression, a finding that is important for assessing the therapeutic potential of SMA treatments and understanding disease pathogenesis.