Yuri Lazebnik
Cold Spring Harbor Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yuri Lazebnik.
Nature Reviews Cancer | 2010
Yuri Lazebnik
The seminal article by Douglas Hanahan and Robert Weinberg on the hallmarks of cancer is 10 years old this year and its contribution to how we see cancer has been substantial. But, in embracing this view, have we lost sight of what makes cancer cancer?
Nature | 2001
Maria S. Soengas; Paola Capodieci; David Polsky M.D.; Jaume Mora; Manel Esteller; Ximena Opitz-Araya; Richard McCombie; James G. Herman; William L. Gerald; Yuri Lazebnik; Carlos Cordon-Cardo; Scott W. Lowe
Metastatic melanoma is a deadly cancer that fails to respond to conventional chemotherapy and is poorly understood at the molecular level. p53 mutations often occur in aggressive and chemoresistant cancers but are rarely observed in melanoma. Here we show that metastatic melanomas often lose Apaf-1, a cell-death effector that acts with cytochrome c and caspase-9 to mediate p53-dependent apoptosis. Loss of Apaf-1 expression is accompanied by allelic loss in metastatic melanomas, but can be recovered in melanoma cell lines by treatment with the methylation inhibitor 5-aza-2′-deoxycytidine (5aza2dC). Apaf-1-negative melanomas are invariably chemoresistant and are unable to execute a typical apoptotic programme in response to p53 activation. Restoring physiological levels of Apaf-1 through gene transfer or 5aza2dC treatment markedly enhances chemosensitivity and rescues the apoptotic defects associated with Apaf-1 loss. We conclude that Apaf-1 is inactivated in metastatic melanomas, which leads to defects in the execution of apoptotic cell death. Apaf-1 loss may contribute to the low frequency of p53 mutations observed in this highly chemoresistant tumour type.
Journal of Cell Biology | 2007
Mariia Yuneva; Nicola Zamboni; Peter J. Oefner; Ravi Sachidanandam; Yuri Lazebnik
The idea that conversion of glucose to ATP is an attractive target for cancer therapy has been supported in part by the observation that glucose deprivation induces apoptosis in rodent cells transduced with the proto-oncogene MYC, but not in the parental line. Here, we found that depletion of glucose killed normal human cells irrespective of induced MYC activity and by a mechanism different from apoptosis. However, depletion of glutamine, another major nutrient consumed by cancer cells, induced apoptosis depending on MYC activity. This apoptosis was preceded by depletion of the Krebs cycle intermediates, was prevented by two Krebs cycle substrates, but was unrelated to ATP synthesis or several other reported consequences of glutamine starvation. Our results suggest that the fate of normal human cells should be considered in evaluating nutrient deprivation as a strategy for cancer therapy, and that understanding how glutamine metabolism is linked to cell viability might provide new approaches for treatment of cancer.
Journal of Biological Chemistry | 1999
David G. Kirsch; Andrea Doseff; B. Nelson Chau; Dae-Sik Lim; Nadja C. de Souza-Pinto; Richard Hansford; Michael B. Kastan; Yuri Lazebnik; J. Marie Hardwick
Caspases are cysteine proteases that mediate apoptosis by proteolysis of specific substrates. Although many caspase substrates have been identified, for most substrates the physiologic caspase(s) required for cleavage is unknown. The Bcl-2 protein, which inhibits apoptosis, is cleaved at Asp-34 by caspases during apoptosis and by recombinant caspase-3 in vitro. In the present study, we show that endogenous caspase-3 is a physiologic caspase for Bcl-2. Apoptotic extracts from 293 cells cleave Bcl-2 but not Bax, even though Bax is cleaved to an 18-kDa fragment in SK-NSH cells treated with ionizing radiation. In contrast to Bcl-2, cleavage of Bax was only partially blocked by caspase inhibitors. Inhibitor profiles indicate that Bax may be cleaved by more than one type of noncaspase protease. Immunodepletion of caspase-3 from 293 extracts abolished cleavage of Bcl-2 and caspase-7, whereas immunodepletion of caspase-7 had no effect on Bcl-2 cleavage. Furthermore, MCF-7 cells, which lack caspase-3 expression, do not cleave Bcl-2 following staurosporine-induced cell death. However, transient transfection of caspase-3 into MCF-7 cells restores Bcl-2 cleavage after staurosporine treatment. These results demonstrate that in these models of apoptosis, specific cleavage of Bcl-2 requires activation of caspase-3. When the pro-apoptotic caspase cleavage fragment of Bcl-2 is transfected into baby hamster kidney cells, it localizes to mitochondria and causes the release of cytochrome c into the cytosol. Therefore, caspase-3-dependent cleavage of Bcl-2 appears to promote further caspase activation as part of a positive feedback loop for executing the cell.
Nature Cell Biology | 2002
Zaher Nahlé; Julia Polakoff; Ramana V. Davuluri; Mila E. McCurrach; Matthew Jacobson; Masashi Narita; Michael Q. Zhang; Yuri Lazebnik; Dafna Bar-Sagi; Scott W. Lowe
Unrestrained E2F activity forces S phase entry and promotes apoptosis through p53-dependent and -independent mechanisms. Here, we show that deregulation of E2F by adenovirus E1A, loss of Rb or enforced E2F-1 expression results in the accumulation of caspase proenzymes through a direct transcriptional mechanism. Increased caspase levels seem to potentiate cell death in the presence of p53-generated signals that trigger caspase activation. Our results demonstrate that mitogenic oncogenes engage a tumour suppressor network that functions at multiple levels to efficiently induce cell death. The data also underscore how cell cycle progression can be coupled to the apoptotic machinery.
The EMBO Journal | 1997
Lavina Faleiro; Ryuji Kobayashi; Howard O. Fearnhead; Yuri Lazebnik
The activity of ICE‐like proteases or caspases is essential for apoptosis. Multiple caspases participate in apoptosis in mammalian cells but how many caspases are involved and what is their relative contribution to cell death is poorly understood. To identify caspases activated in apoptotic cells, we developed an approach to simultaneously detect multiple active caspases. Using tumor cells as a model, we have found that CPP32 (caspase 3) and Mch2 (caspase 6) are the major active caspases in apoptotic cells, and are activated in response to distinct apoptosis‐inducing stimuli and in all cell lines analyzed. Both CPP32 and Mch2 are present in apoptotic cells as multiple active species. In a given cell line these species remained the same irrespective of the apoptotic stimulus used. However, the species of CPP32 and Mch2 detected varied between cell lines, indicating differences in caspase processing. The strategy described here is widely applicable to identify active caspases involved in apoptosis.
Cancer Cell | 2002
Yuri Lazebnik
This article by Yu. Lazebnik, “Can a Biologist Fix a Radio? — or, What I Learned while Studying Apoptosis” has already been published in English (Cancer Cell, 2002, 2, 179–182) and in Russian (Uspekhi Gerontologii, 2003, No. 12, 166–171). Nevertheless, we have undertaken its secondary publication in our journal for two reasons: first, our journal has different readers, and, second, the great significance of this manifest of Yuri Lazebnik. The author in bright and clever form shows the emerging necessity to create formalized language designed to describe complicated systems of regulation of biochemical processes in living cells. The article is published with permission of Cancer Cell and Uspekhi Gerontologii.
Nature Medicine | 2000
Timothy S. Zheng; Stéphane Hunot; Keisuke Kuida; Takashi Momoi; Anu Srinivasan; Donald W. Nicholson; Yuri Lazebnik; Richard A. Flavell
Dysregulation of apoptosis contributes to the pathogenesis of many human diseases. As effectors of the apoptotic machinery, caspases are considered potential therapeutic targets. Using an established in vivo model of Fas-mediated apoptosis, we demonstrate here that elimination of certain caspases was compensated in vivo by the activation of other caspases. Hepatocyte apoptosis and mouse death induced by the Fas agonistic antibody Jo2 required proapoptotic Bcl-2 family member Bid and used a Bid-mediated mitochondrial pathway of caspase activation; deficiency in caspases essential for this pathway, caspase-9 or caspase-3, unexpectedly resulted in rapid activation of alternate caspases after injection of Jo2, and therefore failed to protect mice against Jo2 toxicity. Moreover, both ultraviolet and gamma irradiation, two established inducers of the mitochondrial caspase-activation pathway, also elicited compensatory activation of caspases in cultured caspase-3−/− hepatocytes, indicating that the compensatory caspase activation was mediated through the mitochondria. Our findings provide direct experimental evidence for compensatory pathways of caspase activation. This issue should therefore be considered in developing caspase inhibitors for therapeutic applications.
Cancer Cell | 2003
Dominik M. Duelli; Yuri Lazebnik
The recent findings that cell fusion may be involved in stem cell differentiation (Medvinsky and Smith, 2003) raise a possibility that cell fusion has undiscovered functions, some of which can perhaps be found by revisiting the old ideas that cell fusion can promote disease, especially cancer. Cell fusion is a process in which two or more cells become one by merging their plasma membranes. The ability of a cell to fuse to other cells is referred to as fusogenicity. The progeny of cell fusion are known as hybrids. Perhaps the best-known hybrids are hybridomas, which are made by fusing myeloma cells with lymphocytes to produce monoclonal antibodies. Although cells can be easily fused in the laboratory using readily available chemicals, cell fusion in live organisms appears to be a complex, poorly understood, multistep process that involves cell-cell recognition, cell adhesion, and membrane fusion (reviewed in Hernandez et al., 1996).
Journal of Virology | 2000
David S. Bellows; B. N. Chau; Paul P. Lee; Yuri Lazebnik; William H. Burns; J M Hardwick
ABSTRACT The antiapoptotic Bcl-2 and Bcl-xL proteins of mammals are converted into potent proapoptotic factors when they are cleaved by caspases, a family of apoptosis-inducing proteases (E. H.-Y. Cheng, D. G. Kirsch, R. J. Clem, R. Ravi, M. B. Kastan, A. Bedi, K. Ueno, and J. M. Hardwick, Science 278:1966–1968, 1997; R. J. Clem, E. H.-Y. Cheng, C. L. Karp, D. G. Kirsch, K. Ueno, A. Takahashi, M. B. Kastan, D. E. Griffin, W. C. Earnshaw, M. A. Veliuona, and J. M. Hardwick, Proc. Natl. Acad. Sci. USA 95:554–559, 1998). Gamma herpesviruses also encode homologs of the Bcl-2 family. All tested herpesvirus Bcl-2 homologs possess antiapoptotic activity, including the more distantly related homologs encoded by murine gammaherpesvirus 68 (γHV68) and bovine herpesvirus 4 (BHV4), as described here. To determine if viral Bcl-2 proteins can be converted into death factors, similar to their cellular counterparts, five herpesvirus Bcl-2 homologs from five different viruses were tested for their susceptibility to caspases. Only the viral Bcl-2 protein encoded by γHV68 was susceptible to caspase digestion. However, unlike the caspase cleavage products of cellular Bcl-2, Bcl-xL, and Bid, which are potent inducers of apoptosis, the cleavage product of γHV68 Bcl-2 lacked proapoptotic activity. KSBcl-2, encoded by the Kaposis sarcoma-associated herpesvirus, was the only viral Bcl-2 homolog that was capable of killing cells when expressed as an N-terminal truncation. However, because KSBcl-2 was not cleavable by caspases, the latent proapoptotic activity of KSBcl-2 apparently cannot be released. The Bcl-2 homologs encoded by herpesvirus saimiri, Epstein-Barr virus, and BHV4 were not cleaved by apoptotic cell extracts and did not possess latent proapoptotic activities. Thus, herpesvirus Bcl-2 homologs escape negative regulation by retaining their antiapoptotic activities and/or failing to be converted into proapoptotic proteins by caspases during programmed cell death.