Dominik Wernic
Boehringer Ingelheim
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dominik Wernic.
Bioorganic & Medicinal Chemistry Letters | 1998
Montse Llinas-Brunet; Murray D. Bailey; Gulrez Fazal; Sylvie Goulet; Ted Halmos; Steven R. LaPlante; Roger Maurice; Martin Poirier; Marc-André Poupart; Diane Thibeault; Dominik Wernic; Daniel Lamarre
Hexapeptide DDIVPC-OH is a competitive inhibitor of the hepatitis C virus (HCV) NS3 protease complexed with NS4A cofactor peptide. This hexapeptide corresponds to the N-terminal cleavage product of an HCV dodecapeptide substrate derived from the NS5A/5B cleavage site. Structure-activity studies on Ac-DDIVPC-OH revealed that side chains of the P4, P3 and P1 residues contribute the most to binding and that the introduction of a D-amino acid at the P5 position improves potency considerably. Furthermore, there is a strong preference for cysteine at the P1 position and conservative replacements, such as serine, are not well tolerated.
Current Biology | 2002
Irene Waizenegger; Juan F. Giménez-Abián; Dominik Wernic; Jan-Michael Peters
BACKGROUND Sister chromatid separation is initiated by separase, a protease that cleaves cohesin and thereby dissolves sister chromatid cohesion. Separase is activated by the degradation of its inhibitor securin and by the removal of inhibitory phosphates. In human cells, separase activation also coincides with the cleavage of separase, but it is not known if this reaction activates separase, which protease cleaves separase, and how separase cleavage is regulated. RESULTS Inhibition of separase expression in human cells by RNA interference causes the formation of polyploid cells with large lobed nuclei. In mitosis, many of these cells contain abnormal chromosome plates with unseparated sister chromatids. Inhibitor binding experiments in vitro reveal that securin prevents the access of substrate analogs to the active site of separase. Upon securin degradation, the active site of full-length separase becomes accessible, allowing rapid autocatalytic cleavage of separase at one of three sites. The resulting N- and C-terminal fragments remain associated and can be reinhibited by securin. A noncleavable separase mutant retains its ability to cleave cohesin in vitro. CONCLUSIONS Our results suggest that separase is required for sister chromatid separation during mitosis in human cells. Our data further indicate that securin inhibits separase by blocking the access of substrates to the active site of separase. Securin proteolysis allows autocatalytic processing of separase into a cleaved form, but separase cleavage is not essential for separase activation.
Bioorganic & Medicinal Chemistry Letters | 1998
Montse Llinas-Brunet; Murray D. Bailey; Robert Deziel; Gulrez Fazal; Vida Gorys; Sylvie Goulet; Ted Halmos; Roger Maurice; Martin Poirier; Marc-André Poupart; Jean Rancourt; Diane Thibeault; Dominik Wernic; Daniel Lamarre
Replacement of the C-terminal carboxylic acid functionality of peptide inhibitors of hepatitis C virus (HCV) NS3 protease (complexed with NS4A peptide cofactor) by activated carbonyl groups does not produce any substantial increase in potency. These latter inhibitors also inhibit a variety of other serine and cysteine proteases whereas the carboxylic acids are specific. Norvaline was identified as a chemically stable replacement for the P1 residue of Ac-DDIVPC-OH which was also compatible with activated carbonyl functionalities.
Bioorganic & Medicinal Chemistry Letters | 2000
Montse Llinas-Brunet; Murray D. Bailey; Gulrez Fazal; Elise Ghiro; Vida Gorys; Sylvie Goulet; Ted Halmos; Roger Maurice; Martin Poirier; Marc-André Poupart; Jean Rancourt; Diane Thibeault; Dominik Wernic; Daniel Lamarre
Structure-activity studies on a hexapeptide N-terminal cleavage product of a dodecamer substrate led to the identification of very potent and highly specific inhibitors of the HCV NS3 protease/NS4A cofactor peptide complex. The largest increase in potency was accomplished by the introduction of a (4R)-naphthalen-1-yl-4-methoxy substituent to the P2 proline. N-Terminal truncation resulted in tetrapeptides containing a C-terminal carboxylic acid, which exhibited low micromolar activity against the HCV serine protease.
Tetrahedron Letters | 1995
Pierre L. Beaulieu; Dominik Wernic; Jean-Simon Duceppe; Yvan Guindon
Abstract (2S,3S)-N-Boc-3-amino-1,2-epoxy-4-phenylbutane is prepared in four steps from commercially available N,N-dibenzyl-L-phenylalaninol. The synthesis is amenable to the preparation of kilogram quantities of enantiomerically pure material.
Journal of Medicinal Chemistry | 2014
Pierre L. Beaulieu; Paul C. Anderson; Richard C. Bethell; Michael Bös; Yves Bousquet; Christian Brochu; Michael G. Cordingley; Gulrez Fazal; Michel Garneau; James Gillard; Stephen H. Kawai; Martin Marquis; Ginette McKercher; Marc-André Poupart; Timothy Stammers; Bounkham Thavonekham; Dominik Wernic; Jianmin Duan; George Kukolj
The development of interferon-free regimens for the treatment of chronic HCV infection constitutes a preferred option that is expected in the future to provide patients with improved efficacy, better tolerability, and reduced risk for emergence of drug-resistant virus. We have pursued non-nucleoside NS5B polymerase allosteric inhibitors as combination partners with other direct acting antivirals (DAAs) having a complementary mechanism of action. Herein, we describe the discovery of a potent follow-up compound (BI 207524, 27) to the first thumb pocket 1 NS5B inhibitor to demonstrate antiviral activity in genotype 1 HCV infected patients, BILB 1941 (1). Cell-based replicon potency was significantly improved through electronic modulation of the pKa of the carboxylic acid function of the lead molecule. Subsequent ADME-PK optimization lead to 27, a predicted low clearance compound in man. The preclinical profile of inhibitor 27 is discussed, as well as the identification of a genotoxic metabolite that led to the discontinuation of the development of this compound.
Bioorganic & Medicinal Chemistry Letters | 2013
Timothy Stammers; René Coulombe; Martin Duplessis; Gulrez Fazal; Alexandre Gagnon; Michel Garneau; Sylvie Goulet; Araz Jakalian; Steven R. LaPlante; Jean Rancourt; Bounkham Thavonekham; Dominik Wernic; George Kukolj; Pierre L. Beaulieu
Optimization efforts on the anthranilic acid-based Thumb Pocket 2 HCV NS5B polymerase inhibitors 1 and 2 resulted in the identification of multiple structural elements that contributed to improved cell culture potency. The additive effect of these elements resulted in compound 46, an inhibitor with enzymatic (IC50) and cell culture (EC50) potencies of less than 100 nanomolar.
ACS Medicinal Chemistry Letters | 2016
Lee Fader; Murray D. Bailey; Eric Beaulieu; François Bilodeau; Pierre R. Bonneau; Yves Bousquet; Rebekah Carson; Catherine Chabot; René Coulombe; Jianmin Duan; Craig Fenwick; Michel Garneau; Ted Halmos; Araz Jakalian; Clint James; Stephen H. Kawai; Serge Landry; Steven R. LaPlante; Stephen W. Mason; Sébastien Morin; Nathalie Rioux; Bruno Simoneau; Simon Surprenant; Bounkham Thavonekham; Carl Thibeault; Thao Trinh; Youla S. Tsantrizos; Jennifer Tsoung; Christiane Yoakim; Dominik Wernic
Optimization of pyridine-based noncatalytic site integrase inhibitors (NCINIs) based on compound 2 has led to the discovery of molecules capable of inhibiting virus harboring N124 variants of HIV integrase (IN) while maintaining minimal contribution of enterohepatic recirculation to clearance in rat. Structure-activity relationships at the C6 position established chemical space where the extent of enterohepatic recirculation in the rat is minimized. Desymmetrization of the C4 substituent allowed for potency optimization against virus having the N124 variant of integrase. Combination of these lessons led to the discovery of compound 20, having balanced serum-shifted antiviral potency and minimized excretion in to the biliary tract in rat, potentially representing a clinically viable starting point for a new treatment option for individuals infected with HIV.
Bioorganic & Medicinal Chemistry Letters | 2015
Pierre L. Beaulieu; Josie De Marte; Michel Garneau; Laibin Luo; Timothy Stammers; Chitra Telang; Dominik Wernic; George Kukolj; Jianmin Duan
A prodrug approach was developed to address the low oral bioavailability of a poorly soluble (<0.1μg/mL in pH 6.8 buffer) but highly permeable thumb pocket 1 HCV NS5B polymerase inhibitor. Bioconversion rates of structurally diverse prodrug derivatives were evaluated in a panel of in vitro assays using microsomes, from either liver or intestinal tissues, simulated intestinal fluids, simulated gastric fluids or plasma. In vivo bioconversion of promising candidates was evaluated following oral administration to rats. The most successful strategy involved modification of the parent drug carboxylic acid moiety to glycolic amide esters which improved solubility in lipid-based self-emulsifying drug delivery systems (SEDDS). Crystalline prodrug analog 36 (mp 161°C) showed good solubility in individual SEDDS components (up to 80mg/mL) compared to parent 2 (<3mg/mL; mp 267°C) and cross-species bioconversions which correlated with in vitro stability in liver microsomes.
Journal of The Chemical Society-perkin Transactions 1 | 1991
Francois Soucy; Dominik Wernic; Pierre L. Beaulieu
N-Alkylation of the β-lactone derived from Boc-L-serine followed by ring opening with sodium benzeneselenoate provides chiral substrates which undergo intramolecular radical cyclization to afford cis/trans mixtures of 4-alkyl-L-prolines.