Dominique Cannella
Joseph Fourier University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dominique Cannella.
Journal of Structural Biology | 2010
D. Durand; Corinne Vivès; Dominique Cannella; Javier Pérez; Eva Pebay-Peyroula; Patrice Vachette; Franck Fieschi
The NADPH oxidase complex is involved in the destruction of phagocytosed pathogens through the production of reactive oxygen species. This activatable complex consists of a membranous heterodimeric flavocytochrome b, a small G-protein Rac1/Rac2 and cytosolic factors, p47(phox), p67(phox) and p40(phox). p67(phox), due to its modular structure, is the NADPH oxidase component for which global structure information is most scarce despite its mandatory role in activation and its central position in the whole complex organization. Indeed, p67(phox) is the only factor establishing interaction with all others. In this study, we report the SAXS analysis of p67(phox). Our data reveals that p67(phox) behaves as a multidomain protein with semi-flexible linkers. On the one hand, it appears to be a very elongated molecule with its various domains organized as beads on a string. Linkers are predicted to be partially or mainly unstructured and features of our experimental data do point towards inter-domain flexibility. On the other hand, our work also suggests that the protein is not as extended as unstructured linkers could allow, thereby implying the existence of intra-molecular interactions within p67(phox). We suggest that the dual character of p67(phox) conformation in solution is central to ensure the numerous interactions to be accommodated.
PLOS Pathogens | 2010
Laurence Braun; Dominique Cannella; Philippe Ortet; Mohamed Barakat; Céline F. Sautel; Sylvie Kieffer; Jérôme Garin; Olivier Bastien; Olivier Voinnet; Mohamed-Ali Hakimi
In RNA silencing, small RNAs produced by the RNase-III Dicer guide Argonaute-like proteins as part of RNA-induced silencing complexes (RISC) to regulate gene expression transcriptionally or post-transcriptionally. Here, we have characterized the RNA silencing machinery and exhaustive small RNAome of Toxoplasma gondii, member of the Apicomplexa, a phylum of animal- and human-infecting parasites that cause extensive health and economic damages to human populations worldwide. Remarkably, the small RNA-generating machinery of Toxoplasma is phylogenetically and functionally related to that of plants and fungi, and accounts for an exceptionally diverse array of small RNAs. This array includes conspicuous populations of repeat-associated small interfering RNA (siRNA), which, as in plants, likely generate and maintain heterochromatin at DNA repeats and satellites. Toxoplasma small RNAs also include many microRNAs with clear metazoan-like features whose accumulation is sometimes extremely high and dynamic, an unexpected finding given that Toxoplasma is a unicellular protist. Both plant-like heterochromatic small RNAs and metazoan-like microRNAs bind to a single Argonaute protein, Tg-AGO. Toxoplasma miRNAs co-sediment with polyribosomes, and thus, are likely to act as translational regulators, consistent with the lack of catalytic residues in Tg-AGO. Mass spectrometric analyses of the Tg-AGO protein complex revealed a common set of virtually all known RISC components so far characterized in human and Drosophila, as well as novel proteins involved in RNA metabolism. In agreement with its loading with heterochromatic small RNAs, Tg-AGO also associates substoichiometrically with components of known chromatin-repressing complexes. Thus, a puzzling patchwork of silencing processor and effector proteins from plant, fungal and metazoan origin accounts for the production and action of an unsuspected variety of small RNAs in the single-cell parasite Toxoplasma and possibly in other apicomplexans. This study establishes Toxoplasma as a unique model system for studying the evolution and molecular mechanisms of RNA silencing among eukaryotes.
Molecular and Cellular Biology | 2007
Céline F. Sautel; Dominique Cannella; Olivier Bastien; Sylvie Kieffer; Delphine Aldebert; Jérôme Garin; Isabelle Tardieux; Hassan Belrhali; Mohamed-Ali Hakimi
ABSTRACT Posttranslational histone modifications modulate chromatin-templated processes in various biological systems. H4K20 methylation is considered to have an evolutionarily ancient role in DNA repair and genome integrity, while its function in heterochromatin function and gene expression is thought to have arisen later during evolution. Here, we identify and characterize H4K20 methylases of the Set8 family in Plasmodium and Toxoplasma, two medically important members of the protozoan phylum Apicomplexa. Remarkably, parasite Set8-related proteins display H4K20 mono-, di-, and trimethylase activities, in striking contrast to the monomethylase-restricted human Set8. Structurally, few residues forming the substrate-specific channel dictate enzyme methylation multiplicity. These enzymes are cell cycle regulated and focally enriched at pericentric and telomeric heterochromatin in both parasites. Collectively, our findings provide new insights into the evolution of Set8-mediated biochemical pathways, suggesting that the heterochromatic function of the marker is not restricted to metazoans. Thus, these lower eukaryotes have developed a diverse panel of biological stages through their high capacity to differentiate, and epigenetics only begins to emerge as a strong determinant of their biology.
International Journal for Parasitology | 2009
Laurence Braun; Dominique Cannella; Alexandre M. Pinheiro; Sylvie Kieffer; Hassan Belrhali; Jérôme Garin; Mohamed-Ali Hakimi
SUMOylation, the reversible covalent attachment of small ubiquitin-like modifier (SUMO) peptides has emerged as an important regulator of target protein function. Here we show, by characterization of the Toxoplasma gondii SUMO pathway, that the SUMO conjugation system operates in apicomplexan parasites. A gene encoding the SUMO tag was discovered as were genes encoding the various enzymes required for SUMO processing, ligation and release. Various SUMO conjugates were immuno-detected and by means of a global proteomic-based approach, we identified several T. gondii SUMOylated proteins that reveal many diverse cellular processes in which the modification plays a role. More specifically, SUMO conjugates were seen at the tachyzoite surface in response to signaling generated by host cell contact at the time of invasion. Also, under tissue culture conditions that stimulate bradyzoite differentiation (alkaline pH), we observed the conjugates at the parasitophorous vacuole membrane. The labeling was also at the surface of the mature cysts isolated from parasite-infected mouse brain. Overall, the SUMO conjugation system appears to be a complex and functionally heterogeneous pathway for protein modification in T. gondii with initial data indicating that it is likely to play a putative role in host cell invasion and cyst genesis.
Trends in Parasitology | 2011
Mohamed-Ali Hakimi; Dominique Cannella
RNA silencing plays a major role in innate antiviral and antibacterial defenses in plants, insects, and animals through the action of microRNAs (miRNAs). miRNAs can act in favor of the microorganism, either when it is pathogen-encoded or when the microorganism subverts host miRNAs to its benefit. Recent data point to the possibility that apicomplexan parasites have developed tactics to interfere with host miRNA populations in a parasite-specific manner, thereby identifying the RNA-silencing pathway as a new means to reshape their cellular environment. This review highlights the current understanding and new insights concerning the mechanisms that could be involved and the potential roles of the host microRNome (miRNome) in apicomplexan infection.
Cellular Microbiology | 2010
Alexandre Bougdour; Laurence Braun; Dominique Cannella; Mohamed-Ali Hakimi
The apicomplexan Toxoplasma gondii completes its life cycle by successive processes of parasite differentiation that rely on a tight control of gene expression to ensure appropriate protein profiles on time. During the last 5 years, several groups have pioneered this field of investigation, suggesting that epigenetics could play an important role in the control of parasite gene expression. Histone modifications serve as an effective way to regulate gene transcription but they do not operate alone; rather, they act in concert with other putative epigenetic information carriers (histone variants, small RNAs) and DNA sequence‐specific transcription factors to modulate the higher‐order structure of the chromatin fibre and govern the on‐time recruitment of the transcriptional machinery to specific genes. Regarding the ‘histone code’ hypothesis, the parasite is endowed with a rich repertoire of histone‐modifying enzymes catalysing site‐selective modifications, which are subsequently interpreted by effector proteins that recognize specific covalent marks. Still, several peculiarities seem unique to T. gondii. This review is a synthesis of the current knowledge of how epigenetics contribute to the control of gene expression in T. gondii and, likely, other Apicomplexa.
Cell Reports | 2014
Dominique Cannella; Marie-Pierre Brenier-Pinchart; Laurence Braun; Jason M. van Rooyen; Alexandre Bougdour; Olivier Bastien; Michael S. Behnke; Rose-Laurence Curt; Aurélie Curt; Jeroen Saeij; L. David Sibley; Hervé Pelloux; Mohamed-Ali Hakimi
microRNAs were recently found to be regulators of the host response to infection by apicomplexan parasites. In this study, we identified two immunomodulatory microRNAs, miR-146a and miR-155, that were coinduced in the brains of mice challenged with Toxoplasma in a strain-specific manner. These microRNAs define a characteristic fingerprint for infection by type II strains, which are the most prevalent cause of human toxoplasmosis in Europe and North America. Using forward genetics, we showed that strain-specific differences in miR-146a modulation were in part mediated by the rhoptry kinase, ROP16. Remarkably, we found that miR-146a deficiency led to better control of parasite burden in the gut and most likely of early parasite dissemination in the brain tissue, resulting in the long-term survival of mice.
PLOS Pathogens | 2014
Jiachen Wang; Stacy E. Dixon; Li Min Ting; Ting Kai Liu; Victoria Jeffers; Matthew McKnight Croken; Myrasol Calloway; Dominique Cannella; Mohamed-Ali Hakimi; Kami Kim; William J. Sullivan
Histone acetylation has been linked to developmental changes in gene expression and is a validated drug target of apicomplexan parasites, but little is known about the roles of individual histone modifying enzymes and how they are recruited to target genes. The protozoan parasite Toxoplasma gondii (phylum Apicomplexa) is unusual among invertebrates in possessing two GCN5-family lysine acetyltransferases (KATs). While GCN5a is required for gene expression in response to alkaline stress, this KAT is dispensable for parasite proliferation in normal culture conditions. In contrast, GCN5b cannot be disrupted, suggesting it is essential for Toxoplasma viability. To further explore the function of GCN5b, we generated clonal parasites expressing an inducible HA-tagged dominant-negative form of GCN5b containing a point mutation that ablates enzymatic activity (E703G). Stabilization of this dominant-negative GCN5b was mediated through ligand-binding to a destabilization domain (dd) fused to the protein. Induced accumulation of the ddHAGCN5b(E703G) protein led to a rapid arrest in parasite replication. Growth arrest was accompanied by a decrease in histone H3 acetylation at specific lysine residues as well as reduced expression of GCN5b target genes in GCN5b(E703G) parasites, which were identified using chromatin immunoprecipitation coupled with microarray hybridization (ChIP-chip). Proteomics studies revealed that GCN5b interacts with AP2-domain proteins, apicomplexan plant-like transcription factors, as well as a “core complex” that includes the co-activator ADA2-A, TFIID subunits, LEO1 polymerase-associated factor (Paf1) subunit, and RRM proteins. The dominant-negative phenotype of ddHAGCN5b(E703G) parasites, considered with the proteomics and ChIP-chip data, indicate that GCN5b plays a central role in transcriptional and chromatin remodeling complexes. We conclude that GCN5b has a non-redundant and indispensable role in regulating gene expression required during the Toxoplasma lytic cycle.
Clinical Immunology and Immunopathology | 1991
Grégoire Cozon; Dominique Cannella; Anne Perriat-Langevin; Michèle Jeannin; Philippe Trublereau; René Ecochard; Jean Pierre Revillard
Cyclophosphamide (Cy), an alkylating agent widely used in chemotherapy of leukemia and cancer, causes a well-documented toxicity on hematopoietic and lymphoid cells. Neutropenia is thought to be the main factor involved in infectious complications following antimitotic chemotherapy. Little is known on the effects of these therapies on the mucosal associated lymphoid system which is one of the main barriers against environmental pathogenic agents. The present study examined the effects of a single administration of Cy (200 mg/kg) on murine T and B cell populations of Peyers patches (PPs), IgA secretion in the proximal part of the small intestine, and plasma cells of the lamina propria. Cy induced in mice a transient decrease in the T and B cell populations of the PPs with a drastic fall of B cell counts and a profound decrease of intestinal IgA secretion due to a reduction of lamina propria plasma cells. This transient secretory IgA deficiency may contribute to the infectious complications following antimitotic chemotherapy.
Infection and Immunity | 2015
Vanessa Lagal; Márcia Dinis; Dominique Cannella; Daniel Y. Bargieri; Virginie Gonzalez; Nicole Andenmatten; Markus Meissner; Isabelle Tardieux
ABSTRACT The apical membrane antigen 1 (AMA1) protein was believed to be essential for the perpetuation of two Apicomplexa parasite genera, Plasmodium and Toxoplasma, until we genetically engineered viable parasites lacking AMA1. The reduction in invasiveness of the Toxoplasma gondii RH-AMA1 knockout (RH-AMA1KO) tachyzoite population, in vitro, raised key questions about the outcome associated with these tachyzoites once inoculated in the peritoneal cavity of mice. In this study, we used AMNIS technology to simultaneously quantify and image the parasitic process driven by AMA1KO tachyzoites. We report their ability to colonize and multiply in mesothelial cells and in both resident and recruited leukocytes. While the RH-AMA1KO population amplification is rapidly lethal in immunocompromised mice, it is controlled in immunocompetent hosts, where immune cells in combination sense parasites and secrete proinflammatory cytokines. This innate response further leads to a long-lasting status immunoprotective against a secondary challenge by high inocula of the homologous type I or a distinct type II T. gondii genotypes. While AMA1 is definitively not an essential protein for tachyzoite entry and multiplication in host cells, it clearly assists the expansion of parasite population in vivo.