Dominique Lorang
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dominique Lorang.
Oncogene | 2004
Isabelle Bourdeau; Sonir R. Antonini; André Lacroix; Lawrence S. Kirschner; Ludmila Matyakhina; Dominique Lorang; Steven K. Libutti; Constantine A. Stratakis
Corticotropin (ACTH)-independent macronodular adrenal hyperplasia (AIMAH) is a heterogeneous condition in which cortisol secretion may be mediated by gastrointestinal peptide (GIP), vasopressin, catecholamines and other hormones. We studied the expression profile of AIMAH by genomic cDNA microarray analysis. Total RNA was extracted from eight tissues (three GIP-dependent) and compared to total RNA obtained from adrenal glands from 62 normal subjects. Genes had to be altered in 75% of the patients, and be up- or downregulated at a cutoff ratio of at least 2.0; 82 and 31 genes were found to be consistently up- and downregulated, respectively. Among the former were regulators of transcription, chromatin remodeling, and cell cycle and adhesion. Downregulated sequences included genes involved in immune responses and insulin signaling. Hierarchical clustering correlated with the two main AIMAH diagnostic groups: GIP-dependent and non-GIP-dependent. The genes encoding the 7B2 protein (SGNE1) and WNT1-inducible signaling pathway protein 2 (WISP2) were specifically overexpressed in the GIP-dependent AIMAH. For these, and six more genes, the data were validated by semiquantitative amplification in samples from a total of 32 patients (the original eight, six more cases of AIMAH, and 18 other adrenocortical hyperplasias and tumors) and the H295R adrenocortical cancer cell line. In conclusion, our data confirmed AIMAHs clinical heterogeneity by identifying molecularly distinct diagnostic subgroups. Several candidate genes that may be responsible for AIMAH formation and/or progression were also identified, suggesting pathways that affect the cell cycle, adhesion and transcription as possible mediators of adrenocortical hyperplasia.
The Annals of Thoracic Surgery | 2001
Dao M. Nguyen; Dominique Lorang; G. Aaron Chen; John H. Stewart; Esmail Tabibi; David S. Schrump
BACKGROUND It has previously been demonstrated that 17-allylamino geldanamycin (17-AAG) enhances paclitaxel-mediated cytotoxicity and downregulates vascular endothelial factor expression in non-small cell lung cancer. This project was designed to evaluate the tumoricidal and antiangiogeneic effects of 17-AAG and paclitaxel in H358 non-small cell lung cancer cells grown as xenografts in nude mice. METHODS In vitro cytotoxic drug combination effects were evaluated by (4, 5-dimethylthiazo-2-yl)-2, 5-diphenyl tetrazolium bromide-based proliferation assays. The combinations of 17-AAG and paclitaxel were administered intraperitoneally in nude mice bearing H358 tumor xenografts. Tumor volumes were measured weekly. Tumor expression of erbB2, vascular endothelial cell growth factor, von Willebrand factor (tumor microvasculature), and activated caspase 3 (apoptosis) were determined by immunohistochemistry. RESULTS Five- to 22-fold enhancement of paclitaxel cytotoxicity was achieved by paclitaxel + 17-AAG combination that was paralleled with marked induction of apoptosis. This combination treatment profoundly suppressed tumor growth and significantly prolonged survival of mice bearing H358 xenografts. Immunohistochemical staining of tumor tissues indicated profound reduction of vascular endothelial cell growth factor expression associated with reduction of microvasculature in tumors treated with 17-AAG. Apoptotic cells were more abundant in tumors treated with 17-AAG + paclitaxel than in those treated with 17-AAG or paclitaxel alone. CONCLUSIONS Concurrent exposure of H358 cells to 17-AAG and paclitaxel resulted in supraadditive growth inhibition effects in vitro and in vivo. Analysis of molecular markers of tumor tissues indicated that therapeutic drug levels could be achieved with this chemotherapy regimen leading to significant biological responses. Moreover, 17-AAG-mediated suppression of vascular endothelial cell growth factor production by tumor cells may contribute to the antitumor effects of this drug combination in vivo.
International Journal of Cancer | 2002
Andrew L. Feldman; Josef Friedl; Titia E. Lans; Steven K. Libutti; Dominique Lorang; Marshall S. Miller; Ewa M. Turner; Stephen M. Hewitt; H. Richard Alexander
Interferon‐inducible protein 10 (IP‐10) is an immunomodulatory chemokine recently recognized to have potent antiangiogenic activity in vivo. Due to difficulties in the stability, manufacture and chronic administration of recombinant forms of endogenous antiangiogenic proteins, antiangiogenic gene therapy has emerged as a promising new form of cancer treatment. We retrovirally transduced A375 human melanoma cells with the human IP‐10 gene and injected cells subcutaneously into nude mice. IP‐10‐transduced cells also were mixed with null‐transduced cells in varying proportions before injection. In vivo growth of IP‐10‐transduced melanoma cells was markedly diminished compared to parental or null‐transduced cells (p = 0.0002, Kruskal‐Wallis test). This growth inhibition was associated with a marked reduction in microvessel density. The degree of growth inhibition of tumors following injection of a mixed population of null‐ and IP‐10‐transduced cells was directly associated with the fraction of IP‐10‐transduced cells present. We conclude that retroviral transduction of human melanoma cells with the IP‐10 gene leads to sufficient protein secretion to inhibit angiogenesis and tumor growth. These findings suggest that IP‐10 gene therapy might be an effective therapy in patients with cancer. Published 2002 Wiley‐Liss, Inc.
Cancer | 2009
Anita Tandle; Engy Hanna; Dominique Lorang; Amin Hajitou; Catherine A. Moya; Renata Pasqualini; Wadih Arap; Asha Adem; Elizabeth Starker; Stephen M. Hewitt; Steven K. Libutti
BACKGROUND: Recently, considerable efforts have been directed toward antivascular therapy as a new modality to treat human cancers. However, targeting a therapeutic gene of interest to the tumor vasculature with minimal toxicity to other tissues remains the objective of antivascular gene therapy. Tumor necrosis factor‐α (TNF‐α) is a potent antivascular agent but has limited clinical utility because of significant systemic toxicity. At the maximum tolerated doses of systemic TNF‐α, there is no meaningful antitumor activity. Hence, the objective of this study was to deliver TNF‐α targeted to tumor vasculature by systemic delivery to examine its antitumor activity. METHODS: A hybrid adeno‐associated virus phage vector (AAVP) was used that targets tumor endothelium to express TNF‐α (AAVP‐TNF‐α). The activity of AAVP‐TNF‐α was analyzed in various in vitro and in vivo settings using a human melanoma tumor model. RESULTS: In vitro, AAVP‐TNF‐α infection of human melanoma cells resulted in high levels of TNF‐α expression. Systemic administration of targeted AAVP‐TNF‐α to melanoma xenografts in mice produced the specific delivery of virus to tumor vasculature. In contrast, the nontargeted vector did not target to tumor vasculature. Targeted AAVP delivery resulted in expression of TNF‐α, induction of apoptosis in tumor vessels, and significant inhibition of tumor growth. No systemic toxicity to normal organs was observed. CONCLUSIONS: Targeted AAVP vectors can be used to deliver TNF‐α specifically to tumor vasculature, potentially reducing its systemic toxicity. Because TNF‐α is a promising antivascular agent that currently is limited by its toxicity, the current results suggest the potential for clinical translation of this strategy. Cancer 2009. Published 2008 by the American Cancer Society.
Cancer Research | 2009
H.-C. Jennifer Shen; Mei He; Anathea C. Powell; Asha Adem; Dominique Lorang; Charles K. Heller; Amelia Grover; Kris Ylaya; Stephen M. Hewitt; Stephen J. Marx; Allen M. Spiegel; Steven K. Libutti
Multiple endocrine neoplasia type 1 (MEN1) is an autosomal syndrome caused by mutations in the MEN1 tumor suppressor gene. Whereas the protein product of MEN1, menin, is ubiquitously expressed, somatic loss of the remaining wild-type MEN1 allele results in tumors primarily in parathyroid, pituitary, and endocrine pancreas. To understand the endocrine specificity of the MEN1 syndrome, we evaluated biallelic loss of Men1 by inactivating Men1 in pancreatic progenitor cells using the Cre-lox system. Men1 deletion in progenitor cells that differentiate into exocrine and endocrine pancreas did not affect normal pancreas morphogenesis and development. However, mice having homozygous inactivation of the Men1 in pancreas developed endocrine tumors with no exocrine tumor manifestation, recapitulating phenotypes seen in the MEN1 patients. In the absence of menin, the endocrine pancreas showed increase in cell proliferation, vascularity, and abnormal vascular structures; such changes were lacking in exocrine pancreas. Further analysis revealed that these endocrine manifestations were associated with up-regulation in vascular endothelial growth factor expression in both human and mouse MEN1 pancreatic endocrine tumors. Together, these data suggest the presence of cell-specific factors for menin and a permissive endocrine environment for MEN1 tumorigenesis in endocrine pancreas. Based on our analysis, we propose that menins ability to maintain cellular and microenvironment integrity might explain the endocrine- restrictive nature of the MEN1 syndrome.
Journal of Translational Medicine | 2004
Walter J. Miller; Mark L Kayton; Angela M. Patton; Sarah O'connor; Mei He; Huan Vu; Galina Baibakov; Dominique Lorang; Vladimir Knezevic; Elise C. Kohn; H. Richard Alexander; David I. Stirling; Faribourz Payvandi; George W. Muller; Steven K. Libutti
Reliable quantitative evaluation of molecular pathways is critical for both drug discovery and treatment monitoring. We have modified the CAM assay to quantitatively measure vascular density, endothelial proliferation, and changes in protein expression in response to anti-angiogenic and pro-angiogenic agents. This improved CAM assay can correlate changes in vascular density with changes seen on a molecular level. We expect that these described modifications will result in a single in vivo assay system, which will improve the ability to investigate molecular mechanisms underlying the angiogenic response.
Journal of Translational Medicine | 2007
David P. Mangiameli; Joseph A. Blansfield; Stephan Kachala; Dominique Lorang; Peter H. Schafer; George W. Muller; David I. Stirling; Steven K. Libutti
BackgroundOcular melanoma is the leading intraocular malignancy. There is no effective treatment for metastatic ocular melanoma. We sought a treatment targeting the tumor microenvironment as well as the tumor cells.MethodsMigration of HUVEC cells, the ability of HUVEC cells to form tubes, and proliferative capacity of a human ocular melanoma cell line were tested in the presence of lenalidomide and sorafenib alone and in combination. The compounds were also tested in a rat aortic ring assay and were tested in a highly aggressive human ocular melanoma xenograft model.ResultsLenalidomide and Sorafenib inhibit HUVEC ability to migrate and form tubes and when used in combination the inhibition is increased. The agents alone and in combination inhibit outgrowth in the rat aortic ring model. The combination of the agents improved the inhibition over either single agent. In a xenograft model, combination therapy inhibited tumor growth over inhibition by single agent alone in a significant fashion (p < 0.004: lenalidomide and p < 0.0035: sorafenib). Furthermore, spontaneous lung metastasis development was completely inhibited in the combination treated animals. Sixty percent of vehicle treated animals developed lung metastases compared to 50% of lenalidomide treated animals, and 33% of sorafenib treated animals.ConclusionLenalidomide and sorafenib are effective at targeting endothelial cells, inhibiting growth of ocular melanoma cells and can inhibit growth of tumors in a xenograft model as well as inhibit development of metastases. Combining these agents works in an additive to synergistic way to inhibit the growth of tumors and development of metastases.
Cancer Research | 2004
Andrew L. Feldman; William G. Stetler-Stevenson; Nick G. Costouros; Vladimir Knezevic; Galina Baibakov; H. Richard Alexander; Dominique Lorang; Stephen M. Hewitt; Dong Wan Seo; Marshall S. Miller; Sarah O'connor; Steven K. Libutti
Solid tumors depend on angiogenesis for sustained growth. Tissue inhibitor of metalloproteinase 2 (TIMP-2) is an angiogenesis inhibitor initially characterized for its ability to block matrix metalloproteinases; however, recent data suggest that the antiangiogenic action of TIMP-2 may rely on matrix metalloproteinase-independent mechanisms. The aim of this study was to identify molecular pathways involved in the effects of TIMP-2 on processes dependent on tumor-host interactions such as angiogenesis. Using in vitro cell culture and a syngeneic murine tumor model, we compared the effects of TIMP-2 overexpression on gene expression profiles in vitro to those observed in vivo. Validating these findings by real-time quantitative PCR and layered protein scanning, we identified up-regulation of mitogen-activated protein kinase phosphatase 1 as an effector of the antiangiogenic function of TIMP-2. Up-regulation of mitogen-activated protein kinase phosphatase 1 in tumors overexpressing TIMP-2 leads to dephosphorylation of p38 mitogen-activated protein kinase and inhibition of tumor growth and angiogenesis. Phosphatase activity appears important in regulating tumor angiogenesis, offering a promising direction for the identification of novel molecular targets and antiangiogenic compounds for the treatment of cancer.
PLOS ONE | 2009
H.-C. Jennifer Shen; Asha Adem; Kris Ylaya; Arianne Wilson; Mei He; Dominique Lorang; Stephen M. Hewitt; Klaus Pechhold; David M. Harlan; Irina A. Lubensky; Laura S. Schmidt; W. Marston Linehan; Steven K. Libutti
The von Hippel-Lindau (VHL) syndrome is a pleomorphic familial disease characterized by the development of highly vascularized tumors, such as hemangioblastomas of the central nervous system, pheochromocytomas, renal cell carcinomas, cysts and neuroendocrine tumors of the pancreas. Up to 75% of VHL patients are affected by VHL-associated pancreatic lesions; however, very few reports in the published literature have described the cellular origins and biological roles of VHL in the pancreas. Since homozygous loss of Vhl in mice resulted in embryonic lethality, this study aimed to characterize the functional significance of VHL in the pancreas by conditionally inactivating Vhl utilizing the Cre/LoxP system. Specifically, Vhl was inactivated in different pancreatic cell populations distinguished by their roles during embryonic organ development and their endocrine lineage commitment. With Cre recombinase expression directed by a glucagon promoter in α-cells or an insulin promoter in β-cells, we showed that deletion of Vhl is dispensable for normal functions of the endocrine pancreas. In addition, deficiency of VHL protein (pVHL) in terminally differentiated α-cells or β-cells is insufficient to induce pancreatic neuroendocrine tumorigenesis. Most significantly, we presented the first mouse model of VHL-associated pancreatic disease in mice lacking pVHL utilizing Pdx1-Cre transgenic mice to inactivate Vhl in pancreatic progenitor cells. The highly vascularized microcystic adenomas and hyperplastic islets that developed in Pdx1-Cre;Vhl f/f homozygous mice exhibited clinical features similar to VHL patients. Establishment of three different, cell-specific Vhl knockouts in the pancreas have allowed us to provide evidence suggesting that VHL is functionally important for postnatal ductal and exocrine pancreas, and that VHL-associated pancreatic lesions are likely to originate from progenitor cells, not mature endocrine cells. The novel model systems reported here will provide the basis for further functional and genetic studies to define molecular mechanisms involved in VHL-associated pancreatic diseases.
Cancer Research | 2008
Mijung Kwon; Engy Hanna; Dominique Lorang; Mei He; John S. Quick; Asha Adem; Christina Stevenson; Joon-Yong Chung; Stephen M. Hewitt; Enrique Zudaire; Dominic Esposito; Frank Cuttitta; Steven K. Libutti
Inhibiting angiogenesis has become a major therapeutic strategy for cancer treatment. To identify common intracellular mediators, we previously analyzed gene expression profiles of endothelial cells after treatment with angiogenesis inhibitors. Filamin A interacting protein 1-like (FILIP1L; previously known as down-regulated in ovarian cancer 1) was identified as one of the genes up-regulated in endothelial cells in response to these inhibitors. However, the expression and function of FILIP1L protein is uncharacterized. Here, we provide the first description of the expression and specific subcellular localization of FILIP1L protein in human tissue. Overexpression of FILIP1L resulted in inhibition of cell proliferation and migration and increased apoptosis. In addition, overexpression of FILIP1L truncation mutants showed differential antiproliferative activity. A COOH terminal truncation mutant (FILIP1LDeltaC103) was more potent than wild-type FILIP1L in mediating this activity. Targeted expression of FILIP1LDeltaC103 in tumor vasculature inhibited tumor growth in vivo. Overall, these findings suggest that the novel protein FILIP1L may be an important mediator of the effects of angiogenesis inhibitors and that FILIP1L has the potential to be an antivascular reagent for cancer therapy.