Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dominique Werner is active.

Publication


Featured researches published by Dominique Werner.


Nature Chemical Biology | 2014

Bioluminescent sensor proteins for point-of-care therapeutic drug monitoring

Rudolf Griss; Alberto Schena; Luc Reymond; Luc Patiny; Dominique Werner; Christine E. Tinberg; David Baker; Kai Johnsson

For many drugs, finding the balance between efficacy and toxicity requires monitoring their concentrations in the patients blood. Quantifying drug levels at the bedside or at home would have advantages in terms of therapeutic outcome and convenience, but current techniques require the setting of a diagnostic laboratory. We have developed semisynthetic bioluminescent sensors that permit precise measurements of drug concentrations in patient samples by spotting minimal volumes on paper and recording the signal using a simple point-and-shoot camera. Our sensors have a modular design consisting of a protein-based and a synthetic part and can be engineered to selectively recognize a wide range of drugs, including immunosuppressants, antiepileptics, anticancer agents and antiarrhythmics. This low-cost point-of-care method could make therapies safer, increase the convenience of doctors and patients and make therapeutic drug monitoring available in regions with poor infrastructure.


Forensic Science International | 2013

Biochemical markers of fatal hypothermia

Cristian Palmiere; Daniel Bardy; Igor Letovanec; Patrice Mangin; Marc Augsburger; Francesco Ventura; Katia Iglesias; Dominique Werner

The aim of this study was to investigate the usefulness of postmortem biochemical investigations in the diagnosis of fatal hypothermia. 10 cases of fatal hypothermia and 30 control cases were selected. A series of biochemical parameters, such as glucose, acetone, 3-beta-hydroxybutyrate, isopropyl alcohol, free fatty acids, adrenaline, growth hormone, adrenocorticotropic hormone, thyroid-stimulating hormone, cortisol, calcium, magnesium, C-reactive protein, procalcitonin as well as markers of renal and cardiac functions were measured in blood, postmortem serum from femoral blood, urine, vitreous and pericardial fluid. The results suggested that deaths due to hypothermia, especially in free-ethanol cases, are characterized by increased ketone levels in blood and other biological fluids, increased adrenaline concentrations in urine, increased cortisol levels in postmortem serum from femoral blood and increased free cortisol values in urine. Increased or decreased levels of other biological parameters are either the result of terminal metabolic changes or the expression of preexisting diseases and may provide information to elucidate the death process on a case-by-case basis.


Legal Medicine | 2012

Blood, urine and vitreous isopropyl alcohol as biochemical markers in forensic investigations

Cristian Palmiere; Frank Sporkert; Dominique Werner; Daniel Bardy; Marc Augsburger; Patrice Mangin

Isopropyl alcohol (IPA) is widely used as an industrial solvent and cleaning fluid. After ingestion or absorption, IPA is converted into acetone by alcohol dehydrogenase. However, in ketosis, acetone can be reduced to IPA. The aim of this study was to investigate blood IPA and acetone concentrations in a series of 400 medico-legal autopsies, including cases of diabetic ketoacidosis, hypothermia and alcohol misuse-related deaths, to illustrate the extent of ketosis at the time of death. Vitreous glucose, blood 3-β-hydroxybutyrate (3HB) and acetoacetate (AcAc) concentrations were also determined systematically. Additionally, vitreous and urine IPA, acetone, 3HB and AcAc concentrations as well as other biochemical markers, including glycated hemoglobin and carbohydrate-deficient transferrin (CDT) were also determined in selected cases. The results of this study indicate that ketosis is characterized by the presence of IPA resulting from the acetone metabolism and that IPA can be detected in several substrates. These findings confirm the importance of the systematic determination of IPA and acetone levels that is used to quantify biochemical disturbances and the importance of ketosis at the time of death.


American Journal of Kidney Diseases | 1999

Urinary oxalate and urate to creatinine ratios in a healthy pediatric population.

Vera Matos; Guy van Melle; Dominique Werner; Daniel Bardy; Jean-Pierre Guignard

The purpose of the study was to determine reference percentiles for the urinary (U) oxalate (Ox) and urate (Ura) to creatinine (Cr) concentration ratios in the second morning urine of healthy infants, children, and adolescents. The urinary oxalate and urate to creatinine ratios were determined in the spontaneously voided second morning urine sample. To test reproducibility, two urine samples were analyzed on 2 consecutive weeks in 63% of the subjects. Three hundred eighty-four healthy children (181 girls, 203 boys), aged 1 month to 17 years, from nurseries, kindergartens, and schools of Lausanne, Switzerland, were studied. The 5th and 95th percentiles were determined from the total number of urine samples (627) after confirmation that there was no order effect between repeated measurements and there were no significant sex differences. A nonlinear regression analysis in terms of age was used to smooth the calculated percentiles. In this manner, curves were obtained from which the reference values can be read at any given age. The 95th percentiles decreased with age: for UOx/Cr from 0.175 mg/mg (0.22 mol/mol) at 1 to 6 months to 0.048 mg/mg (0.06 mol/mol) from 7 years and beyond; and UUra/Cr from 2.378 mg/mg (1.6 mol/mol) at 1 to 6 months to 0.594 mg/mg (0.4 mol/mol) in adolescence. We provide 5th and 95th percentile curves for the UOx/Cr and UUra/Cr ratios determined from the second morning urine samples in a large cohort of healthy infants, children, and adolescents. Values were determined by standard analytical chemical techniques and were analyzed by powerful statistical methods. The calculated 95th percentile for the UOx/Cr values fell rather rapidly and reached normal adult values by the age of 7 years, whereas for UUra/Cr, the 95th percentile decreased slowly and stabilized in adolescence.


International Journal of Legal Medicine | 2012

Is the formula of Traub still up to date in antemortem blood glucose level estimation

Cristian Palmiere; Frank Sporkert; Paul Vaucher; Dominique Werner; Daniel Bardy; François Rey; Christelle Lardi; Christophe Brunel; Marc Augsburger; Patrice Mangin

According to the hypothesis of Traub, also known as the ‘formula of Traub’, postmortem values of glucose and lactate found in the cerebrospinal fluid or vitreous humor are considered indicators of antemortem blood glucose levels. However, because the lactate concentration increases in the vitreous and cerebrospinal fluid after death, some authors postulated that using the sum value to estimate antemortem blood glucose levels could lead to an overestimation of the cases of glucose metabolic disorders with fatal outcomes, such as diabetic ketoacidosis. The aim of our study, performed on 470 consecutive forensic cases, was to ascertain the advantages of the sum value to estimate antemortem blood glucose concentrations and, consequently, to rule out fatal diabetic ketoacidosis as the cause of death. Other biochemical parameters, such as blood 3-beta-hydroxybutyrate, acetoacetate, acetone, glycated haemoglobin and urine glucose levels, were also determined. In addition, postmortem native CT scan, autopsy, histology, neuropathology and toxicology were performed to confirm diabetic ketoacidosis as the cause of death. According to our results, the sum value does not add any further information for the estimation of antemortem blood glucose concentration. The vitreous glucose concentration appears to be the most reliable marker to estimate antemortem hyperglycaemia and, along with the determination of other biochemical markers (such as blood acetone and 3-beta-hydroxybutyrate, urine glucose and glycated haemoglobin), to confirm diabetic ketoacidosis as the cause of death.


British Journal of Clinical Pharmacology | 2014

Population pharmacokinetic study of gentamicin in a large cohort of premature and term neonates

Aline Fuchs; Monia Guidi; Eric Giannoni; Dominique Werner; Thierry Buclin; Nicolas Widmer; Chantal Csajka

AIM This study aims to investigate the clinical and demographic factors influencing gentamicin pharmacokinetics in a large cohort of unselected premature and term newborns and to evaluate optimal regimens in this population. METHODS All gentamicin concentration data, along with clinical and demographic characteristics, were retrieved from medical charts in a Neonatal Intensive Care Unit over 5 years within the frame of a routine therapeutic drug monitoring programme. Data were described using non-linear mixed-effects regression analysis ( nonmem®). RESULTS A total of 3039 gentamicin concentrations collected in 994 preterm and 455 term newborns were included in the analysis. A two compartment model best characterized gentamicin disposition. The average parameter estimates, for a median body weight of 2170 g, were clearance (CL) 0.089 l h(-1) (CV 28%), central volume of distribution (Vc ) 0.908 l (CV 18%), intercompartmental clearance (Q) 0.157 l h(-1) and peripheral volume of distribution (Vp ) 0.560 l. Body weight, gestational age and post-natal age positively influenced CL. Dopamine co-administration had a significant negative effect on CL, whereas the influence of indomethacin and furosemide was not significant. Both body weight and gestational age significantly influenced Vc . Model-based simulations confirmed that, compared with term neonates, preterm infants need higher doses, superior to 4 mg kg(-1) , at extended intervals to achieve adequate concentrations. CONCLUSIONS This observational study conducted in a large cohort of newborns confirms the importance of body weight and gestational age for dosage adjustment. The model will serve to set up dosing recommendations and elaborate a Bayesian tool for dosage individualization based on concentration monitoring.


Forensic Science International | 2013

Postmortem diagnosis of unsuspected diabetes mellitus.

Cristian Palmiere; Daniel Bardy; Patrice Mangin; Dominique Werner

Vitreous glucose, blood beta-hydroxybutyrate and glycated hemoglobin were systematically measured in a series of 500 medico-legal autopsies in order to characterize the glycemic control during the weeks preceding death and identify ketoacidosis as the cause of death in diagnosed and unsuspected diabetics. Unenhanced CT-scans, histology and toxicology were performed in all cases. 16 cases of diabetic ketoacidosis were identified based on the results of all investigations. Among those, 13 cases concerned individuals with pre-existing diagnoses of diabetes mellitus whereas 3 cases concerned individuals with undiagnosed diabetes. A recent cocaine use was observed in 2 cases. C-reactive protein, interleukin-6 and interleukin-10 were measured and proved to be increased in all cases of diabetic ketoacidosis, whereas markers of generalized, bacterial infection and sepsis were normal in most of these cases. The results of this study highlight the usefulness of systematically performing biochemistry to identify ketoacidosis in unsuspected diabetics. It also emphasizes the role of toxicology and biochemistry to support the diagnosis of diabetic ketoacidosis and delineate the pathophysiological mechanisms that may disrupt the metabolic balance and finally lead to death in diabetic individuals.


Journal of Forensic Sciences | 2014

Postmortem Distribution of 3-Beta-Hydroxybutyrate†

Cristian Palmiere; Patrice Mangin; Dominique Werner

The concentrations of 3‐beta‐hydroxybutyrate (3HB) in femoral blood, urine, vitreous humor as well as pericardial and cerebrospinal fluids were retrospectively examined in a series of medico‐legal autopsies, which included cases of diabetic ketoacidosis, hypothermia fatalities without ethanol in blood, bodies presenting mild decompositional changes, and sudden deaths in chronic alcoholics. Similar increases in 3HB concentrations were observed in blood, vitreous, and pericardial fluid, irrespective of the cause of death, suggesting that pericardial fluid and vitreous can both be used as alternatives to blood for postmortem 3HB determination. Urine 3HB levels were higher than blood values in most cases. Cerebrospinal fluid 3HB levels were generally lower than concentrations in blood and proved to be diagnostic of underlying metabolic disturbances only when significant increases occurred.


Drug Testing and Analysis | 2015

Post-mortem determination of insulin using chemiluminescence enzyme immunoassay: preliminary results

Cristian Palmiere; Sara Sabatasso; Céline Torrent; François Rey; Dominique Werner; Daniel Bardy

Insulin determination in blood sampled during post-mortem investigation has been repeatedly asserted as being of little diagnostic value due to the rapid occurrence of decompositional changes and blood haemolysis. In this study, we assessed the feasibility of insulin determination in post-mortem serum, vitreous humour, bile, and cerebrospinal and pericardial fluids in one case of fatal insulin self-administration and a series of 40 control cases (diabetics and non-diabetics) using a chemiluminescence enzyme immunoassay. In the case of suicide by insulin self-administration, insulin concentrations in pericardial fluid and bile were higher than blood clinical reference values, though lower than post-mortem serum concentration. Insulin concentrations in vitreous (11.50 mU/L) and cerebrospinal fluid (17.30 mU/L) were lower than blood clinical reference values. Vitreous insulin concentrations in non-diabetic control cases were lower than the estimated detection limit of the method. These preliminary results tend to confirm the usefulness of insulin determination in vitreous humour in situations of suspected fatal insulin administration. Additional findings pertaining to insulin determination in bile, pericardial, and cerebrospinal fluid would suggest that analysis performed in post-mortem serum and injection sites could be complemented, in individual cases, by investigations carried out in alternative biological fluids. Lastly, these results would indicate that analysis with chemiluminescence enzyme immunoassay may provide suitable data, similar to analysis with liquid chromatography-tandem mass spectrometry (LC-MS/MS) and immunoradiometric assay, to support the hypothesis of insulin overdose.


European Journal of Pediatrics | 2010

Evaluation of different POCT devices for glucose measurement in a clinical neonatal setting

Matthias Roth-Kleiner; Corinne Stadelmann Diaw; Jocelyne Urfer; Christiane Ruffieux; Dominique Werner

Hypoglycaemia is a major cause of neonatal morbidity and may induce long-term developmental sequelae. Clinical signs of hypoglycaemia in neonatal infants are unspecific or even absent, and therefore, precise and accurate methods for the assessment of glycaemia are needed. Glycaemia measurement in newborns has some particularities like a very low limit of normal glucose concentration compared to adults and a large range of normal haematocrit values. Many bedside point-of-care testing (POCT) systems are available, but literature about their accuracy in newborn infants is scarce and not very convincing. In this retrospective study, we identified over a 1-year study period 1,324 paired glycaemia results, one obtained at bedside with one of three different POCT systems (Elite™ XL, Ascensia™ Contour™ and ABL 735) and the other in the central laboratory of the hospital with the hexokinase reference method. All three POCT systems tended to overestimate glycaemia values, and none of them fulfilled the ISO 15197 accuracy criteria. The Elite XL appeared to be more appropriate than Contour to detect hypoglycaemia, however with a low specificity. Contour additionally showed an important inaccuracy with increasing haematocrit. The bench analyzer ABL 735 was the most accurate of the three tested POCT systems. Both of the tested handheld glucometers have important drawbacks in their use as screening tools for hypoglycaemia in newborn infants. ABL 735 could be a valuable alternative, but the blood volume needed is more than 15 times higher than for handheld glucometers. Before daily use in the newborn population, careful clinical evaluation of each new POCT system for glucose measurement is of utmost importance.

Collaboration


Dive into the Dominique Werner's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chin B. Eap

University of Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge