Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Don X. Nguyen is active.

Publication


Featured researches published by Don X. Nguyen.


Nature Reviews Cancer | 2009

Metastasis: from dissemination to organ-specific colonization

Don X. Nguyen; Paula D. Bos; Joan Massagué

Metastasis to distant organs is an ominous feature of most malignant tumours but the natural history of this process varies in different cancers. The cellular origin, intrinsic properties of the tumour, tissue affinities and circulation patterns determine not only the sites of tumour spread, but also the temporal course and severity of metastasis to vital organs. Striking disparities in the natural progression of different cancers raise important questions about the evolution of metastatic traits, the genetic determinants of these properties and the mechanisms that lead to the selection of metastatic cells.


Nature | 2009

Genes that mediate breast cancer metastasis to the brain

Paula D. Bos; Xiang H.-F. Zhang; Cristina Nadal; Weiping Shu; Roger R. Gomis; Don X. Nguyen; Andy J. Minn; Marc J. van de Vijver; William L. Gerald; John A. Foekens; Joan Massagué

The molecular basis for breast cancer metastasis to the brain is largely unknown. Brain relapse typically occurs years after the removal of a breast tumour, suggesting that disseminated cancer cells must acquire specialized functions to take over this organ. Here we show that breast cancer metastasis to the brain involves mediators of extravasation through non-fenestrated capillaries, complemented by specific enhancers of blood–brain barrier crossing and brain colonization. We isolated cells that preferentially infiltrate the brain from patients with advanced disease. Gene expression analysis of these cells and of clinical samples, coupled with functional analysis, identified the cyclooxygenase COX2 (also known as PTGS2), the epidermal growth factor receptor (EGFR) ligand HBEGF, and the α2,6-sialyltransferase ST6GALNAC5 as mediators of cancer cell passage through the blood–brain barrier. EGFR ligands and COX2 were previously linked to breast cancer infiltration of the lungs, but not the bones or liver, suggesting a sharing of these mediators in cerebral and pulmonary metastases. In contrast, ST6GALNAC5 specifically mediates brain metastasis. Normally restricted to the brain, the expression of ST6GALNAC5 in breast cancer cells enhances their adhesion to brain endothelial cells and their passage through the blood–brain barrier. This co-option of a brain sialyltransferase highlights the role of cell-surface glycosylation in organ-specific metastatic interactions.


Nature Reviews Genetics | 2007

Genetic determinants of cancer metastasis

Don X. Nguyen; Joan Massagué

Metastasis can be viewed as an evolutionary process, culminating in the prevalence of rare tumour cells that overcame stringent physiological barriers as they separated from their original environment and developmental fate. This phenomenon brings into focus long-standing questions about the stage at which cancer cells acquire metastatic abilities, the relationship of metastatic cells to their tumour of origin, the basis for metastatic tissue tropism, the nature of metastasis predisposition factors and, importantly, the identity of genes that mediate these processes. With knowledge cemented in decades of research into tumour-initiating events, current experimental and conceptual models are beginning to address the genetic basis for cancer colonization of distant organs.


Nature | 2007

Mediators of vascular remodelling co-opted for sequential steps in lung metastasis

Gaorav P. Gupta; Don X. Nguyen; Anne C. Chiang; Paula D. Bos; Juliet Y. Kim; Cristina Nadal; Roger R. Gomis; Katia Manova-Todorova; Joan Massagué

Metastasis entails numerous biological functions that collectively enable cancerous cells from a primary site to disseminate and overtake distant organs. Using genetic and pharmacological approaches, we show that the epidermal growth factor receptor ligand epiregulin, the cyclooxygenase COX2, and the matrix metalloproteinases 1 and 2, when expressed in human breast cancer cells, collectively facilitate the assembly of new tumour blood vessels, the release of tumour cells into the circulation, and the breaching of lung capillaries by circulating tumour cells to seed pulmonary metastasis. These findings reveal how aggressive primary tumorigenic functions can be mechanistically coupled to greater lung metastatic potential, and how such biological activities may be therapeutically targeted with specific drug combinations.


Cell | 2009

WNT/TCF signaling through LEF1 and HOXB9 mediates lung adenocarcinoma metastasis

Don X. Nguyen; Anne C. Chiang; Xiang H.-F. Zhang; Juliet Y. Kim; Mark G. Kris; Marc Ladanyi; William L. Gerald; Joan Massagué

Metastasis from lung adenocarcinoma can occur swiftly to multiple organs within months of diagnosis. The mechanisms that confer this rapid metastatic capacity to lung tumors are unknown. Activation of the canonical WNT/TCF pathway is identified here as a determinant of metastasis to brain and bone during lung adenocarcinoma progression. Gene expression signatures denoting WNT/TCF activation are associated with relapse to multiple organs in primary lung adenocarcinoma. Metastatic subpopulations isolated from independent lymph node-derived lung adenocarcinoma cell lines harbor a hyperactive WNT/TCF pathway. Reduction of TCF activity in these cells attenuates their ability to form brain and bone metastases in mice, independently of effects on tumor growth in the lungs. The WNT/TCF target genes HOXB9 and LEF1 are identified as mediators of chemotactic invasion and colony outgrowth. Thus, a distinct WNT/TCF signaling program through LEF1 and HOXB9 enhances the competence of lung adenocarcinoma cells to colonize the bones and the brain. For a video summary of this article, see the PaperFlick file available with the online Supplemental Data.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Lung metastasis genes couple breast tumor size and metastatic spread

Andy J. Minn; Gaorav P. Gupta; David Padua; Paula D. Bos; Don X. Nguyen; Dimitry S.A. Nuyten; Bas Kreike; Yi Zhang; Yixin Wang; Hemant Ishwaran; John A. Foekens; Marc J. van de Vijver; Joan Massagué

The association between large tumor size and metastatic risk in a majority of clinical cancers has led to questions as to whether these observations are causally related or whether one is simply a marker for the other. This is partly due to an uncertainty about how metastasis-promoting gene expression changes can arise in primary tumors. We investigated this question through the analysis of a previously defined “lung metastasis gene-expression signature” (LMS) that mediates experimental breast cancer metastasis selectively to the lung and is expressed by primary human breast cancer with a high risk for developing lung metastasis. Experimentally, we demonstrate that the LMS promotes primary tumor growth that enriches for LMS+ cells, and it allows for intravasation after reaching a critical tumor size. Clinically, this corresponds to LMS+ tumors being larger at diagnosis compared with LMS− tumors and to a marked rise in the incidence of metastasis after LMS+ tumors reach 2 cm. Patients with LMS-expressing primary tumors selectively fail in the lung compared with the bone or other visceral sites and have a worse overall survival. The mechanistic linkage between metastasis gene expression, accelerated tumor growth, and likelihood of metastatic recurrence provided by the LMS may help to explain observations of prognostic gene signatures in primary cancer and how tumor growth can both lead to metastasis and be a marker for cells destined to metastasize.


Cell | 2011

Activation of Multiple Proto-oncogenic Tyrosine Kinases in Breast Cancer via Loss of the PTPN12 Phosphatase

Tingting Sun; Nicola Aceto; Kristen L. Meerbrey; Jessica D. Kessler; Chunshui Zhou; Ilenia Migliaccio; Don X. Nguyen; Natalya N. Pavlova; Maria F. Botero; Jian Huang; Ronald J. Bernardi; Earlene M. Schmitt; Guang Hu; Mamie Z. Li; Noah Dephoure; Steven P. Gygi; Mitchell Rao; Chad J. Creighton; Susan G. Hilsenbeck; Chad A. Shaw; Donna M. Muzny; Richard A. Gibbs; David A. Wheeler; C. Kent Osborne; Rachel Schiff; Mohamed Bentires-Alj; Stephen J. Elledge; Thomas F. Westbrook

Among breast cancers, triple-negative breast cancer (TNBC) is the most poorly understood and is refractory to current targeted therapies. Using a genetic screen, we identify the PTPN12 tyrosine phosphatase as a tumor suppressor in TNBC. PTPN12 potently suppresses mammary epithelial cell proliferation and transformation. PTPN12 is frequently compromised in human TNBCs, and we identify an upstream tumor-suppressor network that posttranscriptionally controls PTPN12. PTPN12 suppresses transformation by interacting with and inhibiting multiple oncogenic tyrosine kinases, including HER2 and EGFR. The tumorigenic and metastatic potential of PTPN12-deficient TNBC cells is severely impaired upon restoration of PTPN12 function or combined inhibition of PTPN12-regulated tyrosine kinases, suggesting that TNBCs are dependent on the proto-oncogenic tyrosine kinases constrained by PTPN12. Collectively, these data identify PTPN12 as a commonly inactivated tumor suppressor and provide a rationale for combinatorially targeting proto-oncogenic tyrosine kinases in TNBC and other cancers based on their profile of tyrosine-phosphatase activity.


Journal of Virology | 2002

Human Papillomavirus Type 16 E7 Maintains Elevated Levels of the cdc25A Tyrosine Phosphatase during Deregulation of Cell Cycle Arrest

Don X. Nguyen; Thomas F. Westbrook; Dennis J. McCance

ABSTRACT Essential to the oncogenic properties of human papillomavirus type 16 (HPV-16) are the activities encoded by the early gene product E7. HPV-16 E7 (E7.16) binds to cellular factors involved in cell cycle regulation and differentiation. These include the retinoblastoma tumor suppressor protein (Rb) and histone deacetylase (HDAC) complexes. While the biological significance of these interactions remains unclear, E7 is believed to help maintain cells in a proliferative state, thus establishing an environment that is conducive to viral replication. Most pathways that govern cell growth converge on downstream effectors. Among these is the cdc25A tyrosine phosphatase. cdc25A is required for G1/S transition, and its deregulation is associated with carcinogenesis. Considering the importance of cdc25A in cell cycle progression, it represents a relevant target for viral oncoproteins. Accordingly, the present study focuses on the putative deregulation of cdc25A by E7.16. Our results indicate that E7.16 can impede growth arrest induced during serum starvation and keratinocyte differentiation. Importantly, these E7-specific phenotypes correlate with elevated cdc25A steady-state levels. Reporter assays performed with NIH 3T3 cell lines and human keratinocytes indicate that E7 can transactivate the cdc25A promoter. In addition, transcriptional activation by E7.16 requires the distal E2F site within the cdc25A promoter. We further demonstrate that the ability of E7 to abrogate cell cycle arrest, activate cdc25A transcription, and increase cdc25A protein levels requires intact Rb and HDAC-1 binding domains. Finally, by using the cdk inhibitor roscovitine, we reveal that E7 activates the cdc25A promoter independently of cell cycle progression and cdk activity. Consequently, we propose that E7.16 can directly target cdc25A transcription and maintains cdc25A gene expression by disrupting Rb/E2F/HDAC-1 repressor complexes.


Current Opinion in Pharmacology | 2010

Modeling metastasis in the mouse

Paula D. Bos; Don X. Nguyen; Joan Massagué

Metastasis is a complex clinical and biological problem presently under intense study, and several model systems are in use to experimentally recapitulate and dissect the various steps of the metastatic process. Genetically engineered mouse models provide faithful renditions of events in tumor progression, angiogenesis, and local invasion that set the stage for metastasis, whereas engrafting of human or mouse tumor tissues into mouse hosts has been successfully exploited to investigate metastatic dissemination and colonization of distant organs. Real-time, high-resolution microscopy in live animals, and comprehensive genetic and molecular profiling are effective tools to interrogate diverse metastatic cancer cell phenotypes as well as the metastatic tumor microenvironment in different organs. By integrating the information obtained with these complementary approaches the field is currently obtaining an unprecedented level of understanding of the biology, molecular basis, and therapeutic vulnerabilities of metastasis.


Cancer Cell | 2013

Control of Alveolar Differentiation by the Lineage Transcription Factors GATA6 and HOPX Inhibits Lung Adenocarcinoma Metastasis

William K.C. Cheung; Minghui Zhao; Zongzhi Liu; Laura E. Stevens; Paul D. Cao; Justin E. Fang; Thomas F. Westbrook; Don X. Nguyen

Molecular programs that mediate normal cell differentiation are required for oncogenesis and tumor cell survival in certain cancers. How cell-lineage-restricted genes specifically influence metastasis is poorly defined. In lung cancers, we uncovered a transcriptional program that is preferentially associated with distal airway epithelial differentiation and lung adenocarcinoma (ADC) progression. This program is regulated in part by the lineage transcription factors GATA6 and HOPX. These factors can cooperatively limit the metastatic competence of ADC cells, by modulating overlapping alveolar differentiation and invasogenic target genes. Thus, GATA6 and HOPX are critical nodes in a lineage-selective pathway that directly links effectors of airway epithelial specification to the inhibition of metastasis in the lung ADC subtype.

Collaboration


Dive into the Don X. Nguyen's collaboration.

Top Co-Authors

Avatar

Joan Massagué

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paula D. Bos

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Xiang H.-F. Zhang

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. Kent Osborne

Baylor College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge