Xiang H.-F. Zhang
Baylor College of Medicine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xiang H.-F. Zhang.
Nature | 2009
Paula D. Bos; Xiang H.-F. Zhang; Cristina Nadal; Weiping Shu; Roger R. Gomis; Don X. Nguyen; Andy J. Minn; Marc J. van de Vijver; William L. Gerald; John A. Foekens; Joan Massagué
The molecular basis for breast cancer metastasis to the brain is largely unknown. Brain relapse typically occurs years after the removal of a breast tumour, suggesting that disseminated cancer cells must acquire specialized functions to take over this organ. Here we show that breast cancer metastasis to the brain involves mediators of extravasation through non-fenestrated capillaries, complemented by specific enhancers of blood–brain barrier crossing and brain colonization. We isolated cells that preferentially infiltrate the brain from patients with advanced disease. Gene expression analysis of these cells and of clinical samples, coupled with functional analysis, identified the cyclooxygenase COX2 (also known as PTGS2), the epidermal growth factor receptor (EGFR) ligand HBEGF, and the α2,6-sialyltransferase ST6GALNAC5 as mediators of cancer cell passage through the blood–brain barrier. EGFR ligands and COX2 were previously linked to breast cancer infiltration of the lungs, but not the bones or liver, suggesting a sharing of these mediators in cerebral and pulmonary metastases. In contrast, ST6GALNAC5 specifically mediates brain metastasis. Normally restricted to the brain, the expression of ST6GALNAC5 in breast cancer cells enhances their adhesion to brain endothelial cells and their passage through the blood–brain barrier. This co-option of a brain sialyltransferase highlights the role of cell-surface glycosylation in organ-specific metastatic interactions.
Cell | 2008
David Padua; Xiang H.-F. Zhang; Qiongqing Wang; Cristina Nadal; William L. Gerald; Roger R. Gomis; Joan Massagué
Cells released from primary tumors seed metastases to specific organs by a nonrandom process, implying the involvement of biologically selective mechanisms. Based on clinical, functional, and molecular evidence, we show that the cytokine TGFbeta in the breast tumor microenvironment primes cancer cells for metastasis to the lungs. Central to this process is the induction of angiopoietin-like 4 (ANGPTL4) by TGFbeta via the Smad signaling pathway. TGFbeta induction of Angptl4 in cancer cells that are about to enter the circulation enhances their subsequent retention in the lungs, but not in the bone. Tumor cell-derived Angptl4 disrupts vascular endothelial cell-cell junctions, increases the permeability of lung capillaries, and facilitates the trans-endothelial passage of tumor cells. These results suggest a mechanism for metastasis whereby a cytokine in the primary tumor microenvironment induces the expression of another cytokine in departing tumor cells, empowering these cells to disrupt lung capillary walls and seed pulmonary metastases.
Cancer Cell | 2009
Xiang H.-F. Zhang; Qiongqing Wang; William L. Gerald; Clifford A. Hudis; Larry Norton; Marcel Smid; John A. Foekens; Joan Massagué
Metastasis may arise years after removal of a primary tumor. The mechanisms allowing latent disseminated cancer cells to survive are unknown. We report that a gene expression signature of Src activation is associated with late-onset bone metastasis in breast cancer. This link is independent of hormone receptor status or breast cancer subtype. In breast cancer cells, Src is dispensable for homing to the bones or lungs but is critical for the survival and outgrowth of these cells in the bone marrow. Src mediates AKT regulation and cancer cell survival responses to CXCL12 and TNF-related apoptosis-inducing ligand (TRAIL), factors that are distinctively expressed in the bone metastasis microenvironment. Breast cancer cells that lodge in the bone marrow succumb in this environment when deprived of Src activity.
Cancer Cell | 2012
Alexandre Calon; Elisa Espinet; Sergio Palomo-Ponce; Daniele V. F. Tauriello; Mar Iglesias; María Virtudes Céspedes; Marta Sevillano; Cristina Nadal; Peter Jung; Xiang H.-F. Zhang; Daniel Byrom; Antoni Riera; David Rossell; Ramon Mangues; Joan Massagué; Elena Sancho; Eduard Batlle
A large proportion of colorectal cancers (CRCs) display mutational inactivation of the TGF-β pathway, yet, paradoxically, they are characterized by elevated TGF-β production. Here, we unveil a prometastatic program induced by TGF-β in the microenvironment that associates with a high risk of CRC relapse upon treatment. The activity of TGF-β on stromal cells increases the efficiency of organ colonization by CRC cells, whereas mice treated with a pharmacological inhibitor of TGFBR1 are resilient to metastasis formation. Secretion of IL11 by TGF-β-stimulated cancer-associated fibroblasts (CAFs) triggers GP130/STAT3 signaling in tumor cells. This crosstalk confers a survival advantage to metastatic cells. The dependency on the TGF-β stromal program for metastasis initiation could be exploited to improve the diagnosis and treatment of CRC.
Cell | 2009
Don X. Nguyen; Anne C. Chiang; Xiang H.-F. Zhang; Juliet Y. Kim; Mark G. Kris; Marc Ladanyi; William L. Gerald; Joan Massagué
Metastasis from lung adenocarcinoma can occur swiftly to multiple organs within months of diagnosis. The mechanisms that confer this rapid metastatic capacity to lung tumors are unknown. Activation of the canonical WNT/TCF pathway is identified here as a determinant of metastasis to brain and bone during lung adenocarcinoma progression. Gene expression signatures denoting WNT/TCF activation are associated with relapse to multiple organs in primary lung adenocarcinoma. Metastatic subpopulations isolated from independent lymph node-derived lung adenocarcinoma cell lines harbor a hyperactive WNT/TCF pathway. Reduction of TCF activity in these cells attenuates their ability to form brain and bone metastases in mice, independently of effects on tumor growth in the lungs. The WNT/TCF target genes HOXB9 and LEF1 are identified as mediators of chemotactic invasion and colony outgrowth. Thus, a distinct WNT/TCF signaling program through LEF1 and HOXB9 enhances the competence of lung adenocarcinoma cells to colonize the bones and the brain. For a video summary of this article, see the PaperFlick file available with the online Supplemental Data.
Cancer Cell | 2011
Qing Chen; Xiang H.-F. Zhang; Joan Massagué
Aberrant expression of vascular cell adhesion molecule-1 (VCAM-1) in breast cancer cells is associated with lung relapse, but the role of VCAM-1 as a mediator of metastasis has remained unknown. We report that VCAM-1 provides a survival advantage to breast cancer cells that infiltrate leukocyte-rich microenvironments such as the lungs. VCAM-1 tethers metastasis-associated macrophages to cancer cells via counter-receptor α4-integrins. Clustering of cell surface VCAM-1, acting through Ezrin, triggers Akt activation and protects cancer cells from proapoptotic cytokines such as TRAIL. This prosurvival function of VCAM-1 can be blocked by antibodies against α4-integrins. Thus, newly disseminated cancer cells expressing VCAM-1 can thrive in leukocyte-rich microenvironments through juxtacrine activation of a VCAM-1-Ezrin-PI3K/Akt survival pathway.
Cell | 2014
Manuel Valiente; Anna C. Obenauf; Xin Jin; Qing Chen; Xiang H.-F. Zhang; Derek Lee; Jamie E. Chaft; Mark G. Kris; Jason T. Huse; Edi Brogi; Joan Massagué
Brain metastasis is an ominous complication of cancer, yet most cancer cells that infiltrate the brain die of unknown causes. Here, we identify plasmin from the reactive brain stroma as a defense against metastatic invasion, and plasminogen activator (PA) inhibitory serpins in cancer cells as a shield against this defense. Plasmin suppresses brain metastasis in two ways: by converting membrane-bound astrocytic FasL into a paracrine death signal for cancer cells, and by inactivating the axon pathfinding molecule L1CAM, which metastatic cells express for spreading along brain capillaries and for metastatic outgrowth. Brain metastatic cells from lung cancer and breast cancer express high levels of anti-PA serpins, including neuroserpin and serpin B2, to prevent plasmin generation and its metastasis-suppressive effects. By protecting cancer cells from death signals and fostering vascular co-option, anti-PA serpins provide a unifying mechanism for the initiation of brain metastasis in lung and breast cancers.
Cell | 2013
Xiang H.-F. Zhang; Xin Jin; Srinivas Malladi; Yilong Zou; Yong H. Wen; Edi Brogi; Marcel Smid; John A. Foekens; Joan Massagué
How organ-specific metastatic traits arise in primary tumors remains unknown. Here, we show a role of the breast tumor stroma in selecting cancer cells that are primed for metastasis in bone. Cancer-associated fibroblasts (CAFs) in triple-negative (TN) breast tumors skew heterogeneous cancer cell populations toward a predominance of clones that thrive on the CAF-derived factors CXCL12 and IGF1. Limiting concentrations of these factors select for cancer cells with high Src activity, a known clinical predictor of bone relapse and an enhancer of PI3K-Akt pathway activation by CXCL12 and IGF1. Carcinoma clones selected in this manner are primed for metastasis in the CXCL12-rich microenvironment of the bone marrow. The evidence suggests that stromal signals resembling those of a distant organ select for cancer cells that are primed for metastasis in that organ, thus illuminating the evolution of metastatic traits in a primary tumor and its distant metastases.
Cell | 2011
Qiaoran Xi; Zhanxin Wang; Alexia Ileana Zaromytidou; Xiang H.-F. Zhang; Lai Fong Chow-Tsang; Jing X. Liu; Hyesoo Kim; Afsar Barlas; Katia Manova-Todorova; Vesa Kaartinen; Lorenz Studer; Willie Mark; Dinshaw J. Patel; Joan Massagué
Specific chromatin marks keep master regulators of differentiation silent yet poised for activation by extracellular signals. We report that nodal TGF-β signals use the poised histone mark H3K9me3 to trigger differentiation of mammalian embryonic stem cells. Nodal receptors induce the formation of companion Smad4-Smad2/3 and TRIM33-Smad2/3 complexes. The PHD-Bromo cassette of TRIM33 facilitates binding of TRIM33-Smad2/3 to H3K9me3 and H3K18ac on the promoters of mesendoderm regulators Gsc and Mixl1. The crystal structure of this cassette, bound to histone H3 peptides, illustrates that PHD recognizes K9me3, and Bromo binds an adjacent K18ac. The interaction between TRIM33-Smad2/3 and H3K9me3 displaces the chromatin-compacting factor HP1γ, making nodal response elements accessible to Smad4-Smad2/3 for Pol II recruitment. In turn, Smad4 increases K18 acetylation to augment TRIM33-Smad2/3 binding. Thus, nodal effectors use the H3K9me3 mark as a platform to switch master regulators of stem cell differentiation from the poised to the active state.
Nature | 2015
Tiffany Hsu; Lukas M. Simon; Nicholas J. Neill; Richard Marcotte; Azin Sayad; Christopher S. Bland; Gloria V. Echeverria; Tingting Sun; Sarah J. Kurley; Siddhartha Tyagi; Kristen L. Karlin; Rocio Dominguez-Vidana; Jessica D. Hartman; Alexander Renwick; Kathleen A. Scorsone; Ronald J. Bernardi; Samuel O. Skinner; Antrix Jain; Mayra Orellana; Chandraiah Lagisetti; Ido Golding; Sung Y. Jung; Joel R. Neilson; Xiang H.-F. Zhang; Thomas A. Cooper; Thomas R. Webb; Benjamin G. Neel; Chad A. Shaw; Thomas F. Westbrook
MYC (also known as c-MYC) overexpression or hyperactivation is one of the most common drivers of human cancer. Despite intensive study, the MYC oncogene remains recalcitrant to therapeutic inhibition. MYC is a transcription factor, and many of its pro-tumorigenic functions have been attributed to its ability to regulate gene expression programs. Notably, oncogenic MYC activation has also been shown to increase total RNA and protein production in many tissue and disease contexts. While such increases in RNA and protein production may endow cancer cells with pro-tumour hallmarks, this increase in synthesis may also generate new or heightened burden on MYC-driven cancer cells to process these macromolecules properly. Here we discover that the spliceosome is a new target of oncogenic stress in MYC-driven cancers. We identify BUD31 as a MYC-synthetic lethal gene in human mammary epithelial cells, and demonstrate that BUD31 is a component of the core spliceosome required for its assembly and catalytic activity. Core spliceosomal factors (such as SF3B1 and U2AF1) associated with BUD31 are also required to tolerate oncogenic MYC. Notably, MYC hyperactivation induces an increase in total precursor messenger RNA synthesis, suggesting an increased burden on the core spliceosome to process pre-mRNA. In contrast to normal cells, partial inhibition of the spliceosome in MYC-hyperactivated cells leads to global intron retention, widespread defects in pre-mRNA maturation, and deregulation of many essential cell processes. Notably, genetic or pharmacological inhibition of the spliceosome in vivo impairs survival, tumorigenicity and metastatic proclivity of MYC-dependent breast cancers. Collectively, these data suggest that oncogenic MYC confers a collateral stress on splicing, and that components of the spliceosome may be therapeutic entry points for aggressive MYC-driven cancers.