Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Donald J. Arseneau is active.

Publication


Featured researches published by Donald J. Arseneau.


Science | 2011

Kinetic Isotope Effects for the Reactions of Muonic Helium and Muonium with H2

Donald G. Fleming; Donald J. Arseneau; Oleksandr Sukhorukov; Jess H. Brewer; Steven L. Mielke; George C. Schatz; Bruce C. Garrett; Kirk A. Peterson; Donald G. Truhlar

Calculated reaction rates for two hydrogen isotopes, one 36 times heavier than the other, agree with experiments at 500 kelvin. The neutral muonic helium atom may be regarded as the heaviest isotope of the hydrogen atom, with a mass of ~4.1 atomic mass units (4.1H), because the negative muon almost perfectly screens one proton charge. We report the reaction rate of 4.1H with 1H2 to produce 4.1H1H + 1H at 295 to 500 kelvin. The experimental rate constants are compared with the predictions of accurate quantum-mechanical dynamics calculations carried out on an accurate Born-Huang potential energy surface and with previously measured rate constants of 0.11H (where 0.11H is shorthand for muonium). Kinetic isotope effects can be compared for the unprecedentedly large mass ratio of 36. The agreement with accurate quantum dynamics is quantitative at 500 kelvin, and variational transition-state theory is used to interpret the extremely low (large inverse) kinetic isotope effects in the 10−4 to 10−2 range.


Journal of Chemical Physics | 1987

Experimental tests of reaction rate theory: Mu+H2 and Mu+D2

Ivan D. Reid; David M. Garner; Lap. Y. Lee; Masayoshi Senba; Donald J. Arseneau; Donald G. Fleming

Bimolecular rate constants for the thermal chemical reactions of muonium (Mu) with hydrogen and deuterium—Mu+H2→MuH+H and Mu+D2→MuD+D—over the temperature range 473–843 K are reported. The Arrhenius parameters and 1σ uncertainties for the H2 reaction are log A (cm3 molecule−1 s−1)=−9.605±0.074 and Ea =13.29±0.22 kcal mol−1, while for D2 the values are −9.67±0.12 and 14.73±0.40, respectively. These results are significantly more precise than those reported earlier by Garner et al. For the Mu reaction with H2 our results are in excellent agreement with the 3D quantum mechanical calculations of Schatz on the Liu–Siegbahn–Truhlar–Horowitz potential surface, but the data for both reactions compare less favorably with variational transition‐state theory, particularly at the lower temperatures.


Chemical Physics Letters | 1989

Hyperfine constants for the ethyl radical in the gas phase

Paul W. Percival; Jean-Claude Brodovitch; Siu-Keung Leung; Dake Yu; Robert F. Kiefl; David M. Garner; Donald J. Arseneau; Donald G. Fleming; Alicia C. Gonzalez; James R. Kempton; Masayoshi Senba; Krishnan Venkateswaran; S. F. J. Cox

Abstract Muon spin rotation and level-crossing spectroscopy have been used to measure the muon, proton, deuteron and 13C hyperfine coupling constants for the isotopically substituted ethyl radicals CH2CH2Mu, CD2CD2Mu and 13CH213CH2Mu in the gas phase.


Journal of Chemical Physics | 1989

Reaction kinetics of muonium with the halogen gases (F2, Cl2, and Br2)

Alicia C. Gonzalez; Ivan D. Reid; David M. Garner; Masayoshi Senba; Donald G. Fleming; Donald J. Arseneau; James R. Kempton

Bimolecular rate constants for the thermal chemical reactions of muonium (Mu) with the halogen gases—Mu+X2→MuX+X—are reported over the temperature ranges from 500 down to 100, 160, and 200 K for X2=F2,Cl2, and Br2, respectively. The Arrhenius plots for both the chlorine and fluorine reactions show positive activation energies Ea over the whole temperature ranges studied, but which decrease to near zero at low temperature, indicative of the dominant role played by quantum tunneling of the ultralight muonium atom. In the case of Mu+F2, the bimolecular rate constant k(T) is essentially independent of temperature below 150 K, likely the first observation of Wigner threshold tunneling in gas phase (H atom) kinetics. A similar trend is seen in the Mu+Cl2 reaction. The Br2 data exhibit an apparent negative activation energy [Ea=(−0.095±0.020) kcal mol−1], constant over the temperature range of ∼200–400 K, but which decreases at higher temperatures, indicative of a highly attractive potential energy surface. This...


Physica B-condensed Matter | 2003

Low-energy spin-polarized radioactive beams as a nano-scale probe of matter

Robert F. Kiefl; W.A. MacFarlane; G. D. Morris; P. Amaudruz; Donald J. Arseneau; H. Azumi; R. Baartman; T.R. Beals; J. A. Behr; C. Bommas; J.H. Brewer; K. H. Chow; E. Dumont; S.R. Dunsiger; S. Daviel; L. H. Greene; A. Hatakeyama; R. H. Heffner; Y. Hirayama; B. Hitti; S.R. Kreitzman; C. D. P. Levy; R. I. Miller; M. Olivo; R. Poutissou

Abstract We have commissioned a polarized low-energy 8 Li ion beam line, which together with a high-field β-NMR spectrometer, can act as sensitive new probe of thin films and interfaces. The implantation energy can be continuously adjusted from 1 to 90 keV and the maximum polarization achieved thus far is 80%. This instrument opens up new applications for β-NMR which parallel and complement efforts with low-energy muons. For example, it is possible to probe the magnetic field distribution near the surface of a material by stopping a polarized 8 Li beam in a thin overlayer of Ag. Since the 8 Li adopts a site with cubic symmetry in Ag there is no quadrupolar splitting of the resonance, and the 8 Li acts as a purely magnetic sensor.


Journal of Chemical Physics | 1990

Muonium addition reactions in the gas phase: Quantum tunneling in Mu + C2H4 and Mu + C2D4

David M. Garner; Donald G. Fleming; Donald J. Arseneau; Masayoshi Senba; Ivan D. Reid; Randall J. Mikula

The reaction kinetics for the addition of the muonium (Mu=μ+e−) atom to C2H4 and C2D4 have been measured over the temperature range 150–500 K at (N2) moderator pressures near 1 atm. A factor of about 8 variation in moderator pressure was carried out for C2H4, with no significant change seen in the apparent rate constant kapp, which is therefore taken to be at the high pressure limit, yielding the bimolecular rate constant kMu for the addition step. This is also expected from the nature of the μSR technique employed, which, in favorable cases, gives kapp=kMu at any pressure. Comparisons with the H atom data of Lightfoot and Pilling, and Sugawara et al. and the D atom data of Sugawara et al. reveal large isotope effects. Only at the highest temperatures, near 500 K, is kMu/kH given by its classical value of 2.9, from the mean velocity dependence of the collision rate but at the lowest temperatures kMu/kH≳30/1 is seen, reflecting the pronounced tunneling of the much lighter Mu atom (mμ=1/9 mp). The present M...


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 1985

A spin rotator for surface μ+ beams on the new M20 muon channel at TRIUMF☆

John L. Beveridge; Jacob Doornbos; David M. Garner; Donald J. Arseneau; Ivan D. Reid; Masayoshi Senba

Abstract The TRIUMF low energy muon channel, M20, was completely rebuilt in 1983. Amongst the features incorporated into the new channel is a 3 m long Wien filter or dc separator. For surface and sub-surface μ + beams, the magnetic field of this device is sufficient to rotate the muon spin from its natural orientation, antiparallel to the beam momentum, by 90° into a transverse orientation. The performance of this muon “spin rotator” is described.


Journal of Chemical Physics | 1995

The thermal reaction rate of muonium with methane (and ethane) in the gas phase

Rodney Snooks; Donald J. Arseneau; Donald G. Fleming; Masayoshi Senba; James J. Pan; Mee Shelley; Susan Baer

Rates for the gas‐phase thermal reaction Mu+CH4→MuH+CH3 (Mu=μ+e−), have been measured using the μSR (muon spin rotation) technique, over the temperature range 625–820 K. A good fit is obtained to the usual Arrhenius expression, k=A exp(−Ea/RT), giving an activation energy Ea=24.6±0.9 kcal/mol, ∼12 kcal/mol higher than that of the H‐atom isotopic variant of this reaction, H+CH4→H2+CH3. This Ea difference is the largest yet seen at high temperatures between H and Mu in the gas phase, and seems much too high to be explained in terms of [zero‐point‐energy (ZPE)] differences in their respective transition states, indicating instead a dramatic difference in reaction dynamics. The possible sources of this difference include differing reactivities from vibrationally excited states and/or a more favorable tunneling path for the H+CH4 reaction due to its suspected much earlier (and thinner) reaction barrier. In contrast, the similar H‐atom abstraction reactions with H2 and C2H6 gave Ea differences which matched exp...


Journal of Physical Chemistry B | 2016

Rate Coefficient for the 4Heμ + CH4 Reaction at 500 K: Comparison between Theory and Experiment

Donald J. Arseneau; Donald G. Fleming; Yongle Li; Jun Li; Yury V. Suleimanov; Hua Guo

The rate constant for the H atom abstraction reaction from methane by the muonic helium atom, Heμ + CH4 → HeμH + CH3, is reported at 500 K and compared with theory, providing an important test of both the potential energy surface (PES) and reaction rate theory for the prototypical polyatomic CH5 reaction system. The theory used to characterize this reaction includes both variational transition-state (CVT/μOMT) theory (VTST) and ring polymer molecular dynamics (RPMD) calculations on a recently developed PES, which are compared as well with earlier calculations on different PESs for the H, D, and Mu + CH4 reactions, the latter, in particular, providing for a variation in atomic mass by a factor of 36. Though rigorous quantum calculations have been carried out for the H + CH4 reaction, these have not yet been extended to the isotopologues of this reaction (in contrast to H3), so it is important to provide tests of less rigorous theories in comparison with kinetic isotope effects measured by experiment. In this regard, the agreement between the VTST and RPMD calculations and experiment for the rate constant of the Heμ + CH4 reaction at 500 K is excellent, within 10% in both cases, which overlaps with experimental error.


Applied Magnetic Resonance | 1997

Hyperfine coupling constants of muonium-substituted cyclohexadienyl radicals in the gas phase: C6H6Mu, C6D6Mu, C6F6Mu

Donald G. Fleming; Donald J. Arseneau; James J. Pan; Mee Shelley; Masayoshi Senba; Paul W. Percival

Muon spin rotation (μSR) and avoided level crossing resonance (ALCR) have been used to determine the hyperfine coupling constants (hfcs) of the muonium-substituted cyclohexadienyl radicals C6H6Mu, C6D6Mu and C6F6Mu in the gas phase, at pressures ∼1 and 15 atm and temperatures in the range 40–80°C. Equivalent studies of polyatomic free radicals in gases, by electron spin resonance (ESR) spectroscopy, are generally not possible in this pressure range. The present gas phase results support the findings of earlier studies of cyclohexadienyl radicals in the condensed phase, by both μSR and ESR. Minor but not insignificant (∼1%) effects on the hfcs are observed, which can be qualitatively understood for such nonpolar media in terms of their differing polarizabilities. This is the first time that comparisons of this nature have been possible between different phases at the same temperatures. These μSR/ALCR gas-phase results provide a valuable benchmark for computational studies on radicals, free from possible effects of solvent or matrix environments.

Collaboration


Dive into the Donald J. Arseneau's collaboration.

Top Co-Authors

Avatar

Donald G. Fleming

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Masayoshi Senba

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

James J. Pan

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

David M. Garner

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

W.A. MacFarlane

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Alicia C. Gonzalez

University of British Columbia

View shared research outputs
Researchain Logo
Decentralizing Knowledge