Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Donald J. Vander Griend is active.

Publication


Featured researches published by Donald J. Vander Griend.


Cancer Research | 2006

The p38 Kinases MKK4 and MKK6 Suppress Metastatic Colonization in Human Ovarian Carcinoma

Jonathan A. Hickson; Dezheng Huo; Donald J. Vander Griend; Anning Lin; Carrie W. Rinker-Schaeffer; S. Diane Yamada

Despite considerable efforts to improve early detection of ovarian cancer, the majority of women at time of diagnosis will have metastatic disease. Understanding and targeting the molecular underpinnings of metastasis continues to be the principal challenge in the clinical management of ovarian cancer. Whereas the multistep process of metastasis development has been well established in both clinical and experimental models, the molecular factors and signaling pathways involved in successful colonization of a secondary site by disseminated cancer cells are not well defined. We have previously identified mitogen-activated protein kinase (MAPK) kinase 4/c-Jun NH2-terminal kinase (JNK)-activating kinase (MKK4/JNKK1/SEK1, hereafter referred to as MKK4) as a metastasis suppressor protein in ovarian carcinoma. In this study, we elucidate key mechanisms of MKK4-mediated metastasis suppression. Through the use of a kinase-inactive mutant, we show that MKK4 kinase activity is essential for metastasis suppression and prolongation of animal survival. Because MKK4 can activate either of two MAPKs, p38 or JNK, we expressed MKK6 or MKK7, specific activators of these MAPKs, respectively, to delineate which MAPK signaling module was involved in MKK4-mediated metastasis suppression. We observed that MKK6 expression suppressed metastatic colonization whereas MKK7 had no effect. Our finding that MKK4 and MKK6 both suppress metastasis points to the p38 pathway as an important regulatory pathway for metastatic colonization in ovarian cancer.


Hormones and Cancer | 2014

Glucocorticoid Receptor Activity Contributes to Resistance to Androgen-Targeted Therapy in Prostate Cancer

Masis Isikbay; Kristen Otto; Steven Kregel; Jacob Kach; Yi Cai; Donald J. Vander Griend; Suzanne D. Conzen; Russell Z. Szmulewitz

Despite new treatments for castrate-resistant prostate cancer (CRPC), the prognosis of patients with CRPC remains bleak due to acquired resistance to androgen receptor (AR)-directed therapy. The glucocorticoid receptor (GR) and AR share several transcriptional targets, including the anti-apoptotic genes serum and glucocorticoid-regulated kinase 1 (SGK1) and Map kinase phosphatase 1 (MKP1)/dual specificity phosphatase 1 (DUSP1). Because GR expression increases in a subset of primary prostate cancer (PC) following androgen deprivation therapy, we sought to determine whether GR activation can contribute to resistance to AR-directed therapy. We studied CWR-22Rv1 and LAPC4 AR/GR-expressing PC cell lines following treatment with combinations of the androgen R1881, AR antagonist MDV3100, GR agonist dexamethasone, GR antagonists mifepristone and CORT 122928, or the SGK1 inhibitor GSK650394. Cell lines stably expressing GR (NR3C1)-targeted shRNA or ectopic SGK1-Flag were also studied in vivo. GR activation diminished the effects of the AR antagonist MDV3100 on tumor cell viability. In addition, GR activation increased prostate-specific antigen (PSA) secretion and induced SGKI and MKP1/DUSP gene expression. Glucocorticoid-mediated cell viability was diminished by a GR antagonist or by co-treatment with the SGK1 inhibitor GSK650394. In vivo, GR depletion delayed castrate-resistant tumor formation, while SGK1-Flag-overexpressing PC xenografts displayed accelerated castrate-resistant tumor initiation, supporting a role for SGK1 in GR-mediated CRPC progression. We studied several PC models before and following treatment with androgen blockade and found that increased GR expression and activity contributed to tumor-promoting PC cell viability. Increased GR-regulated SGK1 expression appears, at least in part, to mediate enhanced PC cell survival. Therefore, GR and/or SGK1 inhibition may be useful adjuncts to AR blockade for treating CRPC.


Cancer Research | 2005

Suppression of Metastatic Colonization by the Context-Dependent Activation of the c-Jun NH2-Terminal Kinase Kinases JNKK1/MKK4 and MKK7

Donald J. Vander Griend; Masha Kocherginsky; Jonathan A. Hickson; Walter M. Stadler; Anning Lin; Carrie W. Rinker-Schaeffer

Advances in clinical, translational, and basic studies of metastasis have identified molecular changes associated with specific facets of the metastatic process. Studies of metastasis suppressor gene function are providing a critical mechanistic link between signaling cascades and biological outcomes. We have previously identified c-Jun NH2-terminal kinase (JNK) kinase 1/mitogen-activated protein kinase (MAPK) kinase 4 (JNKK1/MKK4) as a prostate cancer metastasis suppressor gene. The JNKK1/MKK4 protein is a dual-specificity kinase that has been shown to phosphorylate and activate the JNK and p38 MAPKs in response to a variety of extracellular stimuli. In this current study, we show that the kinase activity of JNKK1/MKK4 is required for suppression of overt metastases and is sufficient to prolong animal survival in the AT6.1 model of spontaneous metastasis. Ectopic expression of the JNK-specific kinase MKK7 suppresses the formation of overt metastases, whereas the p38-specific kinase MKK6 has no effect. In vivo studies show that both JNKK1/MKK4 and MKK7 suppress the formation of overt metastases by inhibiting the ability of disseminated cells to colonize the lung (secondary site). Finally, we show that JNKK1/MKK4 and MKK7 from disseminated tumor cells are active in the lung but not in the primary tumor, providing a biochemical explanation for why their expression specifically suppressed metastasis while exerting no effect on the primary tumor. Taken together, these studies contribute to a mechanistic understanding of the context-dependent function of metastasis regulatory proteins.


PLOS ONE | 2013

Sox2 Is an Androgen Receptor-Repressed Gene That Promotes Castration-Resistant Prostate Cancer

Steven Kregel; Kyle J. Kiriluk; Alex M. Rosen; Yi Cai; Edwin E. Reyes; Kristen Otto; Westin Tom; Gladell P. Paner; Russell Z. Szmulewitz; Donald J. Vander Griend

Despite advances in detection and therapy, castration-resistant prostate cancer continues to be a major clinical problem. The aberrant activity of stem cell pathways, and their regulation by the Androgen Receptor (AR), has the potential to provide insight into novel mechanisms and pathways to prevent and treat advanced, castrate-resistant prostate cancers. To this end, we investigated the role of the embryonic stem cell regulator Sox2 [SRY (sex determining region Y)-box 2] in normal and malignant prostate epithelial cells. In the normal prostate, Sox2 is expressed in a portion of basal epithelial cells. Prostate tumors were either Sox2-positive or Sox2-negative, with the percentage of Sox2-positive tumors increasing with Gleason Score and metastases. In the castration-resistant prostate cancer cell line CWR-R1, endogenous expression of Sox2 was repressed by AR signaling, and AR chromatin-IP shows that AR binds the enhancer element within the Sox2 promoter. Likewise, in normal prostate epithelial cells and human embryonic stem cells, increased AR signaling also decreases Sox2 expression. Resistance to the anti-androgen MDV3100 results in a marked increase in Sox2 expression within three prostate cancer cell lines, and in the castration-sensitive LAPC-4 prostate cancer cell line ectopic expression of Sox2 was sufficient to promote castration-resistant tumor formation. Loss of Sox2 expression in the castration-resistant CWR-R1 prostate cancer cell line inhibited cell growth. Up-regulation of Sox2 was not associated with increased CD133 expression but was associated with increased FGF5 (Fibroblast Growth Factor 5) expression. These data propose a model of elevated Sox2 expression due to loss of AR-mediated repression during castration, and consequent castration-resistance via mechanisms not involving induction of canonical embryonic stem cell pathways.


Cancer Biology & Therapy | 2005

Metastasis suppressor genes: from gene identification to protein function and regulation.

Jonathan C. Berger; Donald J. Vander Griend; Victoria L. Robinson; Jonathan A. Hickson; Carrie W. Rinker-Schaeffer

In the past decade, findings from various disciplines of research have stimulated a re-evaluation of fundamental concepts of the biology of metastasis. The convergence of two avenues of research has largely been responsible for this shift. First, clinical and experimental studies of specific steps of the metastatic cascade have shown that cancer cells often disseminate early in the natural history of disease and can persist at secondary sites for extended periods of time. These findings suggest that disseminated cells remain subject to growth regulation at distant sites as “dormant” single cells or microscopic metastases consisting of small numbers of cells. Second, complementary functional, biochemical, and signal transduction studies have identified a specific class of proteins that suppress the formation of overt metastases. These proteins are encoded by metastasis suppressor genes which are operationally defined as genes that suppress in vivo metastasis without inhibiting primary tumor growth when expressed ectopically in metastatic cell lines. While metastasis suppressor proteins may affect many steps in metastatic development, recent evidence specifically implicates several of these proteins in the regulation of growth of disseminated cells at secondary sites. This review describes the evolving understanding of rate-limiting steps of metastatic growth, and the role of metastasis suppressor proteins in the regulation of these processes. We will give an overview of the studies of metastasis suppressor protein function which have shifted our attention toward mechanisms of growth control at the secondary site (i.e. “metastatic colonization”). Emphasis is placed upon the complimentary research in the fields of metastasis and signal transduction that has identified signaling pathways controlling metastatic colonization. We also discuss the regulation of metastasis suppressor proteins and the potential biological and biochemical mechanisms responsible for their organ-type specificity. Finally, the implication of these emerging concepts on the development of therapeutic strategies will be presented.


The Prostate | 2010

Cell‐autonomous intracellular androgen receptor signaling drives the growth of human prostate cancer initiating cells

Donald J. Vander Griend; Jason M. D'Antonio; Bora Gurel; Lizamma Antony; Angelo M. DeMarzo; John T. Isaacs

The lethality of prostate cancer is due to the continuous growth of cancer initiating cells (CICs) which are often stimulated by androgen receptor (AR) signaling. However, the underlying molecular mechanism(s) for such AR‐mediated growth stimulation are not fully understood. Such mechanisms may involve cancer cell‐dependent induction of tumor stromal cells to produce paracrine growth factors or could involve cancer cell autonomous autocrine and/or intracellular AR signaling pathways.


Clinical Cancer Research | 2012

Deregulation of a Hox Protein Regulatory Network Spanning Prostate Cancer Initiation and Progression

James L. Chen; Jianrong Li; Kyle J. Kiriluk; Alex M. Rosen; Gladell P. Paner; Tatjana Antic; Yves A. Lussier; Donald J. Vander Griend

Purpose: The aberrant activity of developmental pathways in prostate cancer may provide significant insight into predicting tumor initiation and progression, as well as identifying novel therapeutic targets. To this end, despite shared androgen-dependence and functional similarities to the prostate gland, seminal vesicle cancer is exceptionally rare. Experimental Design: We conducted genomic pathway analyses comparing patient-matched normal prostate and seminal vesicle epithelial cells to identify novel pathways for tumor initiation and progression. Derived gene expression profiles were grouped into cancer biomodules using a protein–protein network algorithm to analyze their relationship to known oncogenes. Each resultant biomodule was assayed for its prognostic ability against publically available prostate cancer patient gene array datasets. Results: Analyses show that the embryonic developmental biomodule containing four homeobox gene family members (Meis1, Meis2, Pbx1, and HoxA9) detects a survival difference in a set of watchful-waiting patients (n = 172, P = 0.05), identify men who are more likely to recur biochemically postprostatectomy (n = 78, P = 0.02), correlate with Gleason score (r = 0.98, P = 0.02), and distinguish between normal prostate, primary tumor, and metastatic disease. In contrast to other cancer types, Meis1, Meis2, and Pbx1 expression is decreased in poor-prognosis tumors, implying that they function as tumor suppressor genes for prostate cancer. Immunohistochemical staining documents nuclear basal-epithelial and stromal Meis2 staining, with loss of Meis2 expression in prostate tumors. Conclusion: These data implicate deregulation of the Hox protein cofactors Meis1, Meis2, and Pbx1 as serving a critical function to suppress prostate cancer initiation and progression. Clin Cancer Res; 18(16); 4291–302. ©2012 AACR.


Clinical & Experimental Metastasis | 2003

MKK4 and metastasis suppression: A marriage of signal transduction and metastasis research

Victoria L. Robinson; Jonathan A. Hickson; Donald J. Vander Griend; Zita Dubauskas; Carrie W. Rinker-Schaeffer

MAP kinase kinase 4 (MKK4) is a member of the stress-activated protein kinase (SAPK) signaling cascade and is involved in the regulation of many cellular processes. We have recently demonstrated a functional role for MKK4 in the suppression of metastases. In this review, we discuss the established cellular and biochemical functions of MKK4, as well as a new function for MKK4 as a metastasis suppressor gene. Because of the importance of signaling studies to this translational work, a detailed example of the strategy and tools that can be employed to define the biochemical mechanism of MKK4-mediated metastasis suppression is presented. Finally, the potential therapeutic utility of these findings is discussed.


PLOS ONE | 2010

Loss of Androgen Receptor-Dependent Growth Suppression by Prostate Cancer Cells Can Occur Independently from Acquiring Oncogenic Addiction to Androgen Receptor Signaling

Jason M. D'Antonio; Donald J. Vander Griend; Lizamma Antony; George Ndikuyeze; Susan L. Dalrymple; Shahriar Koochekpour; John T. Isaacs

The conversion of androgen receptor (AR) signaling as a mechanism of growth suppression of normal prostate epithelial cells to that of growth stimulation in prostate cancer cells is often associated with AR mutation, amplification and over-expression. Thus, down-regulation of AR signaling is commonly therapeutic for prostate cancer. The E006AA cell line was established from a hormone naïve, localized prostate cancer. E006AA cells are genetically aneuploid and grow equally well when xenografted into either intact or castrated male NOG but not nude mice. These cells exhibit: 1) X chromosome duplication and AR gene amplification, although paradoxically not coupled with increased AR expression, and 2) somatic, dominant-negative Serine-599-Glycine loss-of-function mutation within the dimerization surface of the DNA binding domain of the AR gene. No effect on the growth of E006AA cells is observed using targeted knockdown of endogenous mutant AR, ectopic expression of wild-type AR, or treatment with androgens or anti-androgens. E006AA cells represent a prototype for a newly identified subtype of prostate cancer cells that exhibit a dominant-negative AR loss-of-function in a hormonally naïve patient. Such loss-of-function eliminates AR-mediated growth suppression normally induced by normal physiological levels of androgens, thus producing a selective growth advantage for these malignant cells in hormonally naïve patients. These data highlight that loss of AR-mediated growth suppression is an independent process, and that, without additional changes, is insufficient for acquiring oncogene addiction to AR signaling. Thus, patients with prostate cancer cells harboring such AR loss-of-function mutations will not benefit from aggressive hormone or anti-AR therapies even though they express AR protein.


Immunity | 2016

Dendritic Cells Coordinate the Development and Homeostasis of Organ-Specific Regulatory T Cells

Daniel S. Leventhal; Dana C. Gilmore; Julian M. Berger; Saki Nishi; Victoria Lee; Sven Malchow; Douglas E. Kline; Justin Kline; Donald J. Vander Griend; Haochu Huang; Nicholas D. Socci; Peter A. Savage

Although antigen recognition mediated by the T cell receptor (TCR) influences many facets of Foxp3(+) regulatory T (Treg) cell biology, including development and function, the cell types that present antigen to Treg cells in vivo remain largely undefined. By tracking a clonal population of Aire-dependent, prostate-specific Treg cells in mice, we demonstrated an essential role for dendritic cells (DCs) in regulating organ-specific Treg cell biology. We have shown that the thymic development of prostate-specific Treg cells required antigen presentation by DCs. Moreover, Batf3-dependent CD8α(+) DCs were dispensable for the development of this clonotype and had negligible impact on the polyclonal Treg cell repertoire. In the periphery, CCR7-dependent migratory DCs coordinated the activation of organ-specific Treg cells in the prostate-draining lymph nodes. Our results demonstrate that the development and peripheral regulation of organ-specific Treg cells are dependent on antigen presentation by DCs, implicating DCs as key mediators of organ-specific immune tolerance.

Collaboration


Dive into the Donald J. Vander Griend's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yi Cai

University of Chicago

View shared research outputs
Researchain Logo
Decentralizing Knowledge