Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Donald L. Gill is active.

Publication


Featured researches published by Donald L. Gill.


Journal of Biological Chemistry | 2006

Orai1 and STIM reconstitute store-operated calcium channel function.

Jonathan Soboloff; Maria A. Spassova; Xiang D. Tang; Thamara Hewavitharana; Wen Xu; Donald L. Gill

The two membrane proteins, STIM1 and Orai1, have each been shown to be essential for the activation of store-operated channels (SOC). Yet, how these proteins functionally interact is not known. Here, we reveal that STIM1 and Orai1 expressed together reconstitute functional SOCs. Expressed alone, Orai1 strongly reduces store-operated Ca2+ entry (SOCE) in human embryonic kidney 293 cells and the Ca2+ release-activated Ca2+ current (ICRAC) in rat basophilic leukemia cells. However, expressed along with the store-sensing STIM1 protein, Orai1 causes a massive increase in SOCE, enhancing the rate of Ca2+entry by up to 103-fold. This entry is entirely store-dependent since the same coexpression causes no measurable store-independent Ca2+ entry. The entry is completely blocked by the SOC blocker, 2-aminoethoxydiphenylborate. Orai1 and STIM1 coexpression also caused a large gain in CRAC channel function in rat basophilic leukemia cells. The close STIM1 homologue, STIM2, inhibited SOCE when expressed alone but coexpressed with Orai1 caused substantial constitutive (store-independent) Ca2+ entry. STIM proteins are known to mediate Ca2+ store-sensing and endoplasmic reticulum-plasma membrane coupling with no intrinsic channel properties. Our results revealing a powerful gain in SOC function dependent on the presence of both Orai1 and STIM1 strongly suggest that Orai1 contributes the PM channel component responsible for Ca2+ entry. The suppression of SOC function by Orai1 overexpression likely reflects a required stoichiometry between STIM1 and Orai1.


Current Biology | 2006

CRACM1 Multimers Form the Ion-Selective Pore of the CRAC Channel

Monika Vig; Andreas Beck; James M. Billingsley; Annette Lis; Suhel Parvez; Christine Peinelt; Dana Lynn T Koomoa; Jonathan Soboloff; Donald L. Gill; Andrea Fleig; Jean-Pierre Kinet; Reinhold Penner

Receptor-mediated Ca(2+) release from the endoplasmic reticulum (ER) is often followed by Ca(2+) entry through Ca(2+)-release-activated Ca(2+) (CRAC) channels in the plasma membrane . RNAi screens have identified STIM1 as the putative ER Ca(2+) sensor and CRACM1 (Orai1; ) as the putative store-operated Ca(2+) channel. Overexpression of both proteins is required to reconstitute CRAC currents (I(CRAC); ). We show here that CRACM1 forms multimeric assemblies that bind STIM1 and that acidic residues in the transmembrane (TM) and extracellular domains of CRACM1 contribute to the ionic selectivity of the CRAC-channel pore. Replacement of the conserved glutamate in position 106 of the first TM domain of CRACM1 with glutamine (E106Q) acts as a dominant-negative protein, and substitution with aspartate (E106D) enhances Na(+), Ba(2+), and Sr(2+) permeation relative to Ca(2+). Mutating E190Q in TM3 also affects channel selectivity, suggesting that glutamate residues in both TM1 and TM3 face the lumen of the pore. Furthermore, mutating a putative Ca(2+) binding site in the first extracellular loop of CRACM1 (D110/112A) enhances monovalent cation permeation, suggesting that these residues too contribute to the coordination of Ca(2+) ions to the pore. Our data provide unequivocal evidence that CRACM1 multimers form the Ca(2+)-selective CRAC-channel pore.


Nature Reviews Molecular Cell Biology | 2012

STIM proteins: dynamic calcium signal transducers

Jonathan Soboloff; Brad S. Rothberg; Muniswamy Madesh; Donald L. Gill

Stromal interaction molecule (STIM) proteins function in cells as dynamic coordinators of cellular calcium (Ca2+) signals. Spanning the endoplasmic reticulum (ER) membrane, they sense tiny changes in the levels of Ca2+ stored within the ER lumen. As ER Ca2+ is released to generate primary Ca2+ signals, STIM proteins undergo an intricate activation reaction and rapidly translocate into junctions formed between the ER and the plasma membrane. There, STIM proteins tether and activate the highly Ca2+-selective Orai channels to mediate finely controlled Ca2+ signals and to homeostatically balance cellular Ca2+. Details are emerging on the remarkable organization within these STIM-induced junctional microdomains and the identification of new regulators and alternative target proteins for STIM.


Journal of Biological Chemistry | 2007

Dynamic assembly of TRPC1-STIM1-Orai1 ternary complex is involved in store-operated calcium influx. Evidence for similarities in store-operated and calcium release-activated calcium channel components.

Hwei Ling Ong; Kwong Tai Cheng; Xibao Liu; Bidhan C. Bandyopadhyay; Biman C. Paria; Jonathan Soboloff; Biswaranjan Pani; Yousang Gwack; Sonal Srikanth; Brij B. Singh; Donald L. Gill; Indu S. Ambudkar

Store-operated calcium entry (SOCE) is a ubiquitous mechanism that is mediated by distinct SOC channels, ranging from the highly selective calcium release-activated Ca2+ (CRAC) channel in rat basophilic leukemia and other hematopoietic cells to relatively Ca2+-selective or non-selective SOC channels in other cells. Although the exact composition of these channels is not yet established, TRPC1 contributes to SOC channels and regulation of physiological function of a variety of cell types. Recently, Orai1 and STIM1 have been suggested to be sufficient for generating CRAC channels. Here we show that Orai1 and STIM1 are also required for TRPC1-SOC channels. Knockdown of TRPC1, Orai1, or STIM1 attenuated, whereas overexpression of TRPC1, but not Orai1 or STIM1, induced an increase in SOC entry and ISOC in human salivary gland cells. All three proteins were co-localized in the plasma membrane region of cells, and thapsigargin increased co-immunoprecipitation of TRPC1 with STIM1, and Orai1 in human salivary gland cells as well as dispersed mouse submandibular gland cells. In aggregate, the data presented here reveal that all three proteins are essential for generation of ISOC in these cells and that dynamic assembly of TRPC1-STIM1-Orai1 ternary complex is involved in activation of SOC channel in response to internal Ca2+ store depletion. Thus, these data suggest a common molecular basis for SOC and CRAC channels.


Proceedings of the National Academy of Sciences of the United States of America | 2006

A common mechanism underlies stretch activation and receptor activation of TRPC6 channels

Maria A. Spassova; Thamara Hewavitharana; Wen Xu; Jonathan Soboloff; Donald L. Gill

The TRP family of ion channels transduce an extensive range of chemical and physical signals. TRPC6 is a receptor-activated nonselective cation channel expressed widely in vascular smooth muscle and other cell types. We report here that TRPC6 is also a sensor of mechanically and osmotically induced membrane stretch. Pressure-induced activation of TRPC6 was independent of phospholipase C. The stretch responses were blocked by the tarantula peptide, GsMTx-4, known to specifically inhibit mechanosensitive channels by modifying the external lipid-channel boundary. The GsMTx-4 peptide also blocked the activation of TRPC6 channels by either receptor-induced PLC activation or by direct application of diacylglycerol. The effects of the peptide on both stretch- and diacylglycerol-mediated TRPC6 activation indicate that the mechanical and chemical lipid sensing by the channel has a common molecular mechanism that may involve lateral-lipid tension. The mechanosensing properties of TRPC6 channels highly expressed in smooth muscle cells are likely to play a key role in regulating myogenic tone in vascular tissue.


Science | 2010

The Calcium Store Sensor, STIM1, Reciprocally Controls Orai and CaV1.2 Channels

Youjun Wang; Xiaoxiang Deng; Salvatore Mancarella; Eunan Hendron; Satoru Eguchi; Jonathan Soboloff; Xiang Dong Tang; Donald L. Gill

Channel STIMulation The STIM1 protein functions as a calcium sensor and regulates entry of calcium into cells across the plasma membrane. When cell surface receptors are stimulated and cause release of calcium from internal stores in the endoplasmic reticulum (ER), STIM proteins in the ER membrane interact with the Orai channel pore protein in the plasma membrane to allow calcium entry from the outside of the cell (see the Perspective by Cahalan). Park et al. (p. 101) and Wang et al. (p. 105) now show that STIM also acts to suppress conductance by another calcium channel—the voltage-operated CaV1.2 channel. STIM1 appeared to interact directly with CaV1.2 channels in multiple cell types, including vascular smooth muscle cells, neurons, and cultured cells derived from T lymphocytes. The interaction inhibited opening of the CaV1.2 channels and caused depletion of the channel from the cell surface. The sensor protein that monitors depletion of intracellular calcium regulates two classes of calcium entry channels. Calcium signals, pivotal in controlling cell function, can be generated by calcium entry channels activated by plasma membrane depolarization or depletion of internal calcium stores. We reveal a regulatory link between these two channel subtypes mediated by the ubiquitous calcium-sensing STIM proteins. STIM1 activation by store depletion or mutational modification strongly suppresses voltage-operated calcium (CaV1.2) channels while activating store-operated Orai channels. Both actions are mediated by the short STIM-Orai activating region (SOAR) of STIM1. STIM1 interacts with CaV1.2 channels and localizes within discrete endoplasmic reticulum/plasma membrane junctions containing both CaV1.2 and Orai1 channels. Hence, STIM1 interacts with and reciprocally controls two major calcium channels hitherto thought to operate independently. Such coordinated control of the widely expressed CaV1.2 and Orai channels has major implications for Ca2+ signal generation in excitable and nonexcitable cells.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Regulation of melastatin, a TRP-related protein, through interaction with a cytoplasmic isoform

X.Z. Shawn Xu; Moebius Ff; Donald L. Gill; Craig Montell

The TRP (transient receptor potential) superfamily includes a group of subfamilies of channel-like proteins mediating a multitude of physiological signaling processes. The TRP-melastatin (TRPM) subfamily includes the putative tumor suppressor melastatin (MLSN) and is a poorly characterized group of TRP-related proteins. Here, we describe the identification and characterization of an additional TRPM protein TRPM4. We reveal that TRPM4 and MLSN each mediate Ca2+ entry when expressed in HEK293 cells. Furthermore, we demonstrate that a short form of MLSN (MLSN-S) interacts directly with and suppresses the activity of full-length MLSN (MLSN-L). This suppression seems to result from the inhibition of translocation of MLSN-L to the plasma membrane. We propose that control of translocation through interaction between MLSN-S and MLSN-L represents a mode for regulating ion channel activity.


Nature | 2005

Phospholipase Cγ1 controls surface expression of TRPC3 through an intermolecular PH domain

Damian B. van Rossum; Randen L. Patterson; Sumit Sharma; Roxanne K. Barrow; Michael D. Kornberg; Donald L. Gill; Solomon H. Snyder

Many ion channels are regulated by lipids, but prominent motifs for lipid binding have not been identified in most ion channels. Recently, we reported that phospholipase Cγ1 (PLC-γ1) binds to and regulates TRPC3 channels, components of agonist-induced Ca2+ entry into cells. This interaction requires a domain in PLC-γ1 that includes a partial pleckstrin homology (PH) domain—a consensus lipid-binding and protein-binding sequence. We have developed a gestalt algorithm to detect hitherto ‘invisible’ PH and PH-like domains, and now report that the partial PH domain of PLC-γ1 interacts with a complementary partial PH-like domain in TRPC3 to elicit lipid binding and cell-surface expression of TRPC3. Our findings imply a far greater abundance of PH domains than previously appreciated, and suggest that intermolecular PH-like domains represent a widespread signalling mode.


Cell | 2002

Phospholipase C-γ Is Required for Agonist-Induced Ca2+ Entry

Randen L. Patterson; Damian B. van Rossum; Diana L. Ford; Kenneth J. Hurt; Sun Sik Bae; Pann Ghill Suh; Tomohiro Kurosaki; Solomon H. Snyder; Donald L. Gill

We report here that PLC-gamma isoforms are required for agonist-induced Ca2+ entry (ACE). Overexpressed wild-type PLC-gamma1 or a lipase-inactive mutant PLC-gamma1 each augmented ACE in PC12 cells, while a deletion mutant lacking the region containing the SH3 domain of PLC-gamma1 was ineffective. RNA interference to deplete either PLC-gamma1 or PLC-gamma2 in PC12 and A7r5 cells inhibited ACE. In DT40 B lymphocytes expressing only PLC-gamma2, overexpressed muscarinic M5 receptors (M5R) activated ACE. Using DT40 PLC-gamma2 knockout cells, M5R stimulation of ER Ca2+ store release was unaffected, but ACE was abolished. Normal ACE was restored by transient expression of PLC-gamma2 or a lipase-inactive PLC-gamma2 mutant. The results indicate a lipase-independent role of PLC-gamma in the physiological agonist-induced activation of Ca2+ entry.


Journal of Biological Chemistry | 2005

Role of Endogenous TRPC6 Channels in Ca2+ Signal Generation in A7r5 Smooth Muscle Cells

Jonathan Soboloff; Maria A. Spassova; Wen Xu; Li-Ping He; Natalia Cuesta; Donald L. Gill

The ubiquitously expressed canonical transient receptor potential (TRPC) ion channels are considered important in Ca2+ signal generation, but their mechanisms of activation and roles remain elusive. Whereas most studies have examined overexpressed TRPC channels, we used molecular, biochemical, and electrophysiological approaches to assess the expression and function of endogenous TRPC channels in A7r5 smooth muscle cells. Real time PCR and Western analyses reveal TRPC6 as the only member of the diacylglycerol-responsive TRPC3/6/7 subfamily of channels expressed at significant levels in A7r5 cells. TRPC1, TRPC4, and TRPC5 were also abundant. An outwardly rectifying, nonselective cation current was activated by phospholipase C-coupled vasopressin receptor activation or by the diacylglycerol analogue, oleoyl-2-acetyl-sn-glycerol (OAG). Introduction of TRPC6 small interfering RNA sequences into A7r5 cells by electroporation led to 90% reduction of TRPC6 transcript and 80% reduction of TRPC6 protein without any detectable compensatory changes in the expression of other TRPC channels. The OAG-activated nonselective cation current was similarly reduced by TRPC6 RNA interference. Intracellular Ca2+ measurements using fura-2 revealed that thapsigargin-induced store-operated Ca2+ entry was unaffected by TRPC6 knockdown, whereas vasopressin-induced Ca2+ entry was suppressed by more than 50%. In contrast, OAG-induced Ca2+ transients were unaffected by TRPC6 knockdown. Nevertheless, OAG-induced Ca2+ entry bore the hallmarks of TRPC6 function; it was inhibited by protein kinase C and blocked by the Src-kinase inhibitor, 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2). Importantly, OAG-induced Ca2+ entry was blocked by the potent L-type Ca2+ channel inhibitor, *nimodipine. Thus, TRPC6 activation probably results primarily in Na ion entry and depolarization, leading to activation of L-type channels as the mediators of Ca2+ entry. Calculations reveal that even 90% reduction of TRPC6 channels would allow depolarization sufficient to activate L-type channels. This tight coupling between TRPC6 and L-type channels is probably important in mediating smooth muscle cell membrane potential and muscle contraction.

Collaboration


Dive into the Donald L. Gill's collaboration.

Top Co-Authors

Avatar

Youjun Wang

Beijing Normal University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiangyu Cai

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Natalia A. Loktionova

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Randen L. Patterson

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Robert M. Nwokonko

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge