Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Natalia A. Loktionova is active.

Publication


Featured researches published by Natalia A. Loktionova.


Journal of Clinical Investigation | 2009

In vivo selection of hematopoietic progenitor cells and temozolomide dose intensification in rhesus macaques through lentiviral transduction with a drug resistance gene

André Larochelle; Uimook Choi; Yan Shou; Nora Naumann; Natalia A. Loktionova; Joshua R. Clevenger; Allen Krouse; Mark E. Metzger; Robert E. Donahue; Elizabeth M. Kang; Clinton F. Stewart; Derek A. Persons; Harry L. Malech; Cynthia E. Dunbar; Brian P. Sorrentino

Major limitations to gene therapy using HSCs are low gene transfer efficiency and the inability of most therapeutic genes to confer a selective advantage on the gene-corrected cells. One approach to enrich for gene-modified cells in vivo is to include in the retroviral vector a drug resistance gene, such as the P140K mutant of the DNA repair enzyme O6-methylguanine-DNA methyltransferase (MGMT*). We transplanted 5 rhesus macaques with CD34+ cells transduced with lentiviral vectors encoding MGMT* and a fluorescent marker, with or without homeobox B4 (HOXB4), a potent stem cell self-renewal gene. Transgene expression and common integration sites in lymphoid and myeloid lineages several months after transplantation confirmed transduction of long-term repopulating HSCs. However, all animals showed only a transient increase in gene-marked lymphoid and myeloid cells after O6-benzylguanine (BG) and temozolomide (TMZ) administration. In 1 animal, cells transduced with MGMT* lentiviral vectors were protected and expanded after multiple courses of BG/TMZ, providing a substantial increase in the maximum tolerated dose of TMZ. Additional cycles of chemotherapy using 1,3-bis-(2-chloroethyl)-1-nitrosourea (BCNU) resulted in similar increases in gene marking levels, but caused high levels of nonhematopoietic toxicity. Inclusion of HOXB4 in the MGMT* vectors resulted in no substantial increase in gene marking or HSC amplification after chemotherapy treatment. Our data therefore suggest that lentivirally mediated gene transfer in transplanted HSCs can provide in vivo chemoprotection of progenitor cells, although selection of long-term repopulating HSCs was not seen.


Cancer Chemotherapy and Pharmacology | 1999

Modulation of cyclophosphamide activity by O 6-alkylguanine-DNA alkyltransferase

Henry S. Friedman; Anthony E. Pegg; Stewart P. Johnson; Natalia A. Loktionova; M. Eileen Dolan; Paul Modrich; Robert C. Moschel; Robert F. Struck; Thomas P. Brent; Susan M. Ludeman; Nancy Bullock; Cynthia Kilborn; Steve Keir; Qing Dong; Darell D. Bigner; O. Michael Colvin

Purpose: The human medulloblastoma cell line D283 Med (4-HCR), a line resistant to 4-hydroperoxycyclophosphamide (4-HC), displays enhanced␣repair of DNA interstrand crosslinks induced by phosphoramide mustard. D283 Med (4-HCR) cells are cross-resistant to 1,3-bis(2-chloroethyl)-1-nitrosourea, but partial sensitivity is restored after elevated levels of O6-alkylguanine-DNA alkyltransferase (AGT) are depleted by O6-benzylguanine (O6-BG). Studies were conducted to define the activity of 4-HC and 4-hydroperoxydidechlorocyclophosphamide against D283 Med (4-HCR) after AGT is depleted by O6-BG. Methods: Limiting dilution and xenograft studies were conducted to define the activity of 4-HC and 4-hydroperoxydidechlorocyclophosphamide with or without O6-BG. Results: The activity of 4-HC and 4-hydroperoxydidechlorocyclophosphamide against D283 Med (4-HCR) was increased after AGT depletion by O6-BG preincubation. Similar studies with Chinese hamster ovary cells, with or without stable transfection with a plasmid expressing the human AGT protein, revealed that the AGT-expressing cells were significantly less sensitive to 4-HC and 4-hydroperoxydidechlorocyclophosphamide. Reaction of DNA with 4-HC, phosphoramide mustard, or acrolein revealed that only 4-HC and acrolein caused a decrease in AGT levels. Conclusions: We propose that a small but potentially significant part of the cellular toxicity of cyclophosphamide in these cells is due to acrolein, and that this toxicity is abrogated by removal of the acrolein adduct from DNA by AGT.


Biochemical Pharmacology | 1999

Protection of CHO cells by mutant forms of O6-alkylguanine-DNA alkyltransferase from killing by 1,3-Bis-(2-chloroethyl)-1-nitrosourea (BCNU) plus O6-benzylguanine or O6-benzyl-8-oxoguanine

Natalia A. Loktionova; Meng Xu-Welliver; Tina M. Crone; Sreenivas Kanugula; Anthony E. Pegg

O6-Benzylguanine (BG) is an inactivator of human O6-alkylguanine-DNA alkyltransferase (AGT) currently undergoing clinical trials to enhance cancer chemotherapy by alkylating agents. Mutant forms of AGT resistant to BG in vitro were expressed in CHO cells to determine if they could impart resistance to killing by the combination of BG and 1,3-bis-(2-chloroethyl)-1-nitrosourea (BCNU). All the BG-resistant mutant proteins tested (P140A, P140K, P138M/V139L/P140K, G156A, P140A/G160R, and G160R) showed a reduced rate of reaction with methylated DNA substrates in vitro. However, when expressed in equal amounts in CHO cells, mutants P140A, P140K, P138M/V139L/P140K, and G160R gave levels of protection from the chloroethylating agent BCNU equivalent to that of wild-type AGT. This indicates that a 10-fold reduction in rate constant did not prevent their ability to repair chloroethylated DNA in the cell. AGT activity was readily lost when CHO cells expressing wild-type AGT were exposed to BG or its 8-oxo metabolite (O6-benzyl-8-oxoguanine), but cells expressing mutants P140A or G160R required 30-fold higher concentrations and cells expressing mutants P140K or P138M/V139L/P140K were totally resistant. When cells were treated with 80 microM BCNU plus BG or 8-oxo-BG, those expressing wild-type AGT were killed when inhibitor concentrations of up to 500 microM were used, whereas cells expressing P140K or P138M/V139L/P140K showed no effect, and cells expressing P140A or G160R showed an intermediate resistance. These results suggest that: (i) appearance of BG-resistant mutant AGTs may be a problem during therapy, and (ii) the P140K mutant AGT is an excellent candidate for gene therapy approaches where expression of a BG-resistant AGT in hematopoietic cells is used to reduce toxicity.


Nature Communications | 2015

STIM1 dimers undergo unimolecular coupling to activate Orai1 channels

Xizhuo Wang; Xianming Wang; Natalia A. Loktionova; Xiangyu Cai; Robert M. Nwokonko; Erin Vrana; Youjun Wang; Brad S. Rothberg; Donald L. Gill

The endoplasmic reticulum (ER) Ca2+ sensor, STIM1, becomes activated when ER-stored Ca2+ is depleted and translocates into ER–plasma membrane junctions where it tethers and activates Orai1 Ca2+ entry channels. The dimeric STIM1 protein contains a small STIM-Orai-activating region (SOAR)—the minimal sequence sufficient to activate Orai1 channels. Since SOAR itself is a dimer, we constructed SOAR concatemer–dimers and introduced mutations at F394, which is critical for Orai1 coupling and activation. The F394H mutation in both SOAR monomers completely blocks dimer function, but F394H introduced in only one of the dimeric SOAR monomers has no effect on Orai1 binding or activation. This reveals an unexpected unimolecular coupling between STIM1 and Orai1 and argues against recent evidence suggesting dimeric interaction between STIM1 and two adjacent Orai1 channel subunits. The model predicts that STIM1 dimers may be involved in crosslinking between Orai1 channels with implications for the kinetics and localization of Orai1 channel opening.


Journal of Biological Chemistry | 2016

The Orai1 Store-operated Calcium Channel Functions as a Hexamer

Xiangyu Cai; Robert M. Nwokonko; Natalia A. Loktionova; Xianming Wang; Ping Xin; Mohamed Trebak; Youjun Wang; Donald L. Gill

Orai channels mediate store-operated Ca2+ signals crucial in regulating transcription in many cell types, and implicated in numerous immunological and inflammatory disorders. Despite their central importance, controversy surrounds the basic subunit structure of Orai channels, with several biochemical and biophysical studies suggesting a tetrameric structure yet crystallographic evidence indicating a hexamer. We systematically investigated the subunit configuration of the functional Orai1 channel, generating a series of tdTomato-tagged concatenated Orai1 channel constructs (dimers to hexamers) expressed in CRISPR-derived ORAI1 knock-out HEK cells, stably expressing STIM1-YFP. Surface biotinylation demonstrated that the full-length concatemers were surface membrane-expressed. Unexpectedly, Orai1 dimers, trimers, tetramers, pentamers, and hexamers all mediated similar and substantial store-operated Ca2+ entry. Moreover, each Orai1 concatemer mediated Ca2+ currents with inward rectification and reversal potentials almost identical to those observed with expressed Orai1 monomer. In Orai1 tetramers, subunit-specific replacement with Orai1 E106A “pore-inactive” subunits revealed that functional channels utilize only the N-terminal dimer from the tetramer. In contrast, Orai1 E106A replacement in Orai1 hexamers established that all the subunits can contribute to channel formation, indicating a hexameric channel configuration. The critical Ca2+ selectivity filter-forming Glu-106 residue may mediate Orai1 channel assembly around a central Ca2+ ion within the pore. Thus, multiple E106A substitutions in the Orai1 hexamer may promote an alternative “trimer-of-dimers” channel configuration in which the C-terminal E106A subunits are excluded from the hexameric core. Our results argue strongly against a tetrameric configuration for Orai1 channels and indicate that the Orai1 channel functions as a hexamer.


Journal of Medicinal Chemistry | 2008

Substitution of aminomethyl at the meta-position enhances the inactivation of O6-alkylguanine-DNA alkyltransferase by O6-benzylguanine.

Gary T. Pauly; Natalia A. Loktionova; Qingming Fang; Sai Lakshmana Vankayala; Wayne C. Guida; Anthony E. Pegg

O(6)-Benzylguanine is an irreversible inactivator of O(6)-alkylguanine-DNA alkyltransferase currently in clinical trials to overcome alkyltransferase-mediated resistance to certain cancer chemotherapeutic alkylating agents. In order to produce more soluble alkyltransferase inhibitors, we have synthesized three aminomethyl-substituted O(6)-benzylguanines and the three methyl analogs and found that the substitution of aminomethyl at the meta-position greatly enhances inactivation of alkyltransferase, whereas para-substitution has little effect and ortho-substitution virtually eliminates activity. Molecular modeling of their interactions with alkyltransferase provided a molecular explanation for these results. The square of the correlation coefficient (R(2)) obtained between E-model scores (obtained from GLIDE XP/QPLD docking calculations) vs log(ED(50)) values via a linear regression analysis was 0.96. The models indicate that the ortho-substitution causes a steric clash interfering with binding, whereas the meta-aminomethyl substitution allows an interaction of the amino group to generate an additional hydrogen bond with the protein.


Chemical Research in Toxicology | 2008

Alkyltransferase-mediated Toxicity of 1,3-Butadiene Diepoxide

Aley G. Kalapila; Natalia A. Loktionova; Anthony E. Pegg

Human O(6)-alkylguanine-DNA alkyltransferase (hAGT) expression increases mutations and cytotoxicity following exposure to 1,3-butadiene diepoxide (BDO), and hAGT-DNA cross-links are formed in the presence of BDO. We have used hAGT mutants to investigate the mechanism of cross-link formation and genotoxicity. Formation of a hAGT-DNA conjugate in vitro was observed with C145S and C145A mutant proteins but was considerably diminished with the C145A/C150S double mutant confirming that cross-linking primarily involves either of these two cysteine residues, which are located in the active site pocket of the protein. Cross-link formation by BDO occurred both via (a) an initial reaction of BDO with hAGT followed by attack of the reactive hAGT complex on DNA, and (b) the initial reaction of BDO with DNA followed by a reaction between hAGT and the DNA adduct. These results differ from those with 1,2-dibromoethane (DBE) where Cys(145) is the only site of attachment and pathway (b) does not occur. The complex formed between hAGT at Cys(145) and BDO was very unstable in aqueous solution. However, the BDO-hAGT complex at Cys(150) exhibited stability for more than 1 h. The effect of hAGT and mutants on BDO-induced genotoxicity was studied in E. coli using the forward assay to rifampicin resistance. Both mutations and cell killing were greatly increased by wild type hAGT, and there was a smaller but significant effect with the C145A mutant. The R128A mutant and R128A/C145A and C145A/C150S double mutants were ineffective, supporting the hypothesis that the formation of hAGT-DNA cross-links is responsible for the enhanced genotoxicity detected in this biological system. In the absence of hAGT, there were equal proportions of G:C to A:T transitions, G:C to T:A transversions, and A:T to T:A transversions. Wild type hAGT expression yielded significantly greater G:C to A:T and A:T to G:C transitions, whereas C145A mutant expression resulted in more transitions and transversions at A:T base-pairs.


Biochemical Pharmacology | 2002

Interaction of mammalian O6-alkylguanine-DNA alkyltransferases with O6-benzylguanine

Natalia A. Loktionova; Anthony E. Pegg

Abstract Human O 6 -alkylguanine-DNA alkyltransferase (hAGT) activity is a major factor in providing resistance to cancer chemotherapeutic alkylating agents. Inactivation of hAGT by O 6 -benzylguanine (BG) is a promising strategy for overcoming this resistance. Previous studies, which have focused on the region encompassed by residues Pro138 to Gly173, have identified more than 100 individual mutations located at 23 discrete sites at which alterations can render AGT less sensitive to BG. We have now extended the examination of possible sites in hAGT at which alterations might lead to BG resistance to include the residues from Val130 to Asn137, which also make up part of the binding pocket into which BG is postulated to fit. A further 21 mutations located at positions Gly132, Met134, Arg135, and Gly136 were found to lower sensitivity to BG. Mutants R135L, R135Y, and G136P were the most strikingly resistant, with a 50-fold increase in the amount of BG needed to obtain 50% inactivation. These results therefore increase the number of sites at which BG resistance can occur in response to a single amino acid change to 27. Although mammalian AGTs are very similar in amino acid sequence, mouse AGT (mAGT) is significantly less sensitive to BG than rat AGT (rAGT) or hAGT. Construction of chimeric proteins in which portions came from the rAGT and the mAGT indicated that the difference in inactivation resided solely in the amino acids located in the sequence from residues 150 to 188. Individual mutations of the three residues where rAGT and mAGT differ in this region showed that the principal reason for the reduced ability of the mAGT to react with BG was the presence of a histidine residue at position 161, which is occupied by asparagine in rAGT and hAGT. These experiments indicate that many minor changes in amino acids forming all parts of the nucleoside binding pocket of AGT can alter its ability to react with BG and that the possibility that polymorphisms or variants may occur reducing the effectiveness of combination therapy with BG and alkylating agents must be considered.


Biochemical Journal | 2000

Conserved residue lysine165 is essential for the ability of O6-alkylguanine-DNA alkyltransferase to react with O6-benzylguanine.

Meng Xu-Welliver; Sreenivas Kanugula; Natalia A. Loktionova; Tina M. Crone; Anthony E. Pegg

The role of lysine(165) in the activity of the DNA repair protein, O(6)-alkylguanine-DNA alkyltransferase (AGT), and the ability of AGT to react with the pseudosubstrate inhibitor, O(6)-benzylguanine (BG), was investigated by changing this lysine to all other 19 possibilities. All of these mutants (except for K165T, which could not be tested as it was too poorly active for assay in crude cell extracts) gave BG-resistant AGTs with increases in the amount of inhibitor needed to produce a 50% loss of activity in a 30 min incubation (ED(50)) from 100-fold (K165A) to 2400-fold (K165F). Lys(165) is a completely conserved residue in AGTs from many species, and all of the mutations at this site also reduced the ability to repair methylated DNA. The least deleterious change was that to arginine, which reduced the rate constant for DNA repair by approx. 2.5-fold. Mutant K165R resembled all of the other mutants in being highly resistant to BG, with an ED(50) value for inactivation by BG>200-fold greater than wild-type. Detailed studies of purified K165A AGT showed that the rate constant for repair and the binding to methylated DNA substrates were reduced by 10-20-fold. Despite this, the K165A mutant AGT was able to protect cells from alkylating agents and this protection was not abolished by BG. These results show that, firstly, lysine at position 165 is needed for optimal activity of AGT towards methylated DNA substrates and is essential for efficient reaction with BG; and second, even if the AGT activity towards methylated DNA substrates is impaired by mutations at codon 165, such mutants can protect tumour cells from therapeutic alkylating agents. These results raise the possibility that the conservation of Lys(165) is due to the need for AGT activity towards substrates containing more bulky adducts than O(6)-methylguanine. They also suggest that alterations at Lys(165) may occur during chemotherapy with BG and alkylating agents and could limit the effectiveness of this therapy.


Cancer Research | 2008

Degradation of BRCA2 in alkyltransferase-mediated DNA repair and its clinical implications.

Subha Philip; Srividya Swaminathan; Sergey G. Kuznetsov; Sreenivas Kanugula; Kajal Biswas; Suhwan Chang; Natalia A. Loktionova; Diana C. Haines; Philipp Kaldis; Anthony E. Pegg; Shyam K. Sharan

Germ-line mutations in BRCA2 have been linked to early-onset familial breast cancer. BRCA2 is known to play a key role in repairing double-strand breaks. Here, we describe the involvement of BRCA2 in O6-alkylguanine DNA alkyltransferase (AGT)-mediated repair of O6-methylguanine adducts. We show that BRCA2 physically associates and undergoes repair-mediated degradation with AGT. In contrast, BRCA2 with a 29-amino-acid deletion in an evolutionarily conserved domain does not bind to alkylated AGT; the two proteins are not degraded; and mouse embryonic fibroblasts are specifically sensitive to alkylating agents that result in O6-methylguanine adducts. We show that O6-benzylguanine (O6BG), a nontoxic inhibitor of AGT, can also induce BRCA2 degradation. BRCA2 is a viable target for cancer therapy because BRCA2-deficient cells are hypersensitive to chemotherapeutic DNA-damaging agents. We show a marked effect of O6BG pretreatment on cell sensitivity to cisplatin. We also show the efficacy of this approach on a wide range of human tumor cell lines, which suggests that chemosensitization of tumors by targeted degradation of BRCA2 may be an important consideration when devising cancer therapeutics.

Collaboration


Dive into the Natalia A. Loktionova's collaboration.

Top Co-Authors

Avatar

Anthony E. Pegg

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Donald L. Gill

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Xiangyu Cai

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Robert M. Nwokonko

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Youjun Wang

Beijing Normal University

View shared research outputs
Top Co-Authors

Avatar

Robert C. Moschel

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Xianming Wang

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Mohamed Trebak

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Gary T. Pauly

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Sreenivas Kanugula

Penn State Milton S. Hershey Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge