Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Donald O. Somers is active.

Publication


Featured researches published by Donald O. Somers.


Bioorganic & Medicinal Chemistry Letters | 2011

Discovery of GSK143, a highly potent, selective and orally efficacious spleen tyrosine kinase inhibitor.

John Liddle; Francis Louis Atkinson; Michael David Barker; Paul S. Carter; Neil R. Curtis; Robert P. Davis; Clement Douault; Marion C. Dickson; Dorothy Elwes; Neil Stuart Garton; Matthew Gray; Thomas G. Hayhow; Clare I. Hobbs; Emma Jones; Stuart G. Leach; Karen Leavens; Huw D. Lewis; Scott McCleary; Margarete Neu; Vipulkumar Kantibhai Patel; Alex G.S. Preston; Cesar Ramirez-Molina; Tracy Jane Shipley; Philip Alan Skone; Nick Smithers; Donald O. Somers; Ann Louise Walker; Robert J. Watson; Gordon G. Weingarten

The lead optimisation of the diaminopyrimidine carboxamide series of spleen tyrosine kinase inhibitors is described. The medicinal chemistry strategy was focused on optimising the human whole blood activity whilst achieving a sufficient margin over liability kinases and hERG activity. GSK143 is a potent and highly selective SYK inhibitor showing good efficacy in the rat Arthus model.


Journal of Chemical Information and Modeling | 2016

CSAR 2014: A Benchmark Exercise Using Unpublished Data from Pharma

Heather A. Carlson; Richard D. Smith; Kelly L. Damm-Ganamet; Jeanne A. Stuckey; Aqeel Ahmed; Donald O. Somers; Michael Kranz; Patricia A. Elkins; Guanglei Cui; Catherine E. Peishoff; Millard H. Lambert; James B. Dunbar

The 2014 CSAR Benchmark Exercise was the last community-wide exercise that was conducted by the group at the University of Michigan, Ann Arbor. For this event, GlaxoSmithKline (GSK) donated unpublished crystal structures and affinity data from in-house projects. Three targets were used: tRNA (m1G37) methyltransferase (TrmD), Spleen Tyrosine Kinase (SYK), and Factor Xa (FXa). A particularly strong feature of the GSK data is its large size, which lends greater statistical significance to comparisons between different methods. In Phase 1 of the CSAR 2014 Exercise, participants were given several protein-ligand complexes and asked to identify the one near-native pose from among 200 decoys provided by CSAR. Though decoys were requested by the community, we found that they complicated our analysis. We could not discern whether poor predictions were failures of the chosen method or an incompatibility between the participants method and the setup protocol we used. This problem is inherent to decoys, and we strongly advise against their use. In Phase 2, participants had to dock and rank/score a set of small molecules given only the SMILES strings of the ligands and a protein structure with a different ligand bound. Overall, docking was a success for most participants, much better in Phase 2 than in Phase 1. However, scoring was a greater challenge. No particular approach to docking and scoring had an edge, and successful methods included empirical, knowledge-based, machine-learning, shape-fitting, and even those with solvation and entropy terms. Several groups were successful in ranking TrmD and/or SYK, but ranking FXa ligands was intractable for all participants. Methods that were able to dock well across all submitted systems include MDock,1 Glide-XP,2 PLANTS,3 Wilma,4 Gold,5 SMINA,6 Glide-XP2/PELE,7 FlexX,8 and MedusaDock.9 In fact, the submission based on Glide-XP2/PELE7 cross-docked all ligands to many crystal structures, and it was particularly impressive to see success across an ensemble of protein structures for multiple targets. For scoring/ranking, submissions that showed statistically significant achievement include MDock1 using ITScore1,10 with a flexible-ligand term,11 SMINA6 using Autodock-Vina,12,13 FlexX8 using HYDE,14 and Glide-XP2 using XP DockScore2 with and without ROCS15 shape similarity.16 Of course, these results are for only three protein targets, and many more systems need to be investigated to truly identify which approaches are more successful than others. Furthermore, our exercise is not a competition.


Journal of Medicinal Chemistry | 2009

p38alpha mitogen-activated protein kinase inhibitors: optimization of a series of biphenylamides to give a molecule suitable for clinical progression.

Nicola Mary Aston; Paul Bamborough; Jacqueline B. Buckton; Chris D. Edwards; Duncan S. Holmes; Katherine Louise Jones; Vipulkumar Kantibhai Patel; Penny A. Smee; Donald O. Somers; Giovanni Vitulli; Ann Louise Walker

p38alpha MAP kinase is a key anti-inflammatory target for rheumatoid arthritis, influencing biosynthesis of pro-inflammatory cytokines TNFalpha and IL-1beta at a translational and transcriptional level. In this paper, we describe how we have optimized a series of novel p38alpha/beta inhibitors using crystal structures of our inhibitors bound to p38alpha, classical medicinal chemistry, and modeling of virtual libraries to derive a molecule suitable for progression into clinical development.


Journal of Medicinal Chemistry | 2015

The discovery of in vivo active mitochondrial branched-chain aminotransferase (BCATm) inhibitors by hybridizing fragment and HTS hits

Sophie M. Bertrand; Nicolas Ancellin; Benjamin Beaufils; Ryan P. Bingham; Jennifer A. Borthwick; Anne Bénédicte Boullay; Eric Boursier; Paul S. Carter; Chun Wa Chung; Ian Churcher; Nerina Dodic; Marie Hélène Fouchet; Charlène Fournier; Peter Francis; Laura A. Gummer; Kenny Herry; Andrew Hobbs; Clare I. Hobbs; Paul Homes; Craig Jamieson; Edwige Nicodeme; Stephen D. Pickett; Iain H. Reid; Graham L. Simpson; Lisa A. Sloan; Sarah E. Smith; Donald O. Somers; Claus Spitzfaden; Colin J. Suckling; Klara Valko

The hybridization of hits, identified by complementary fragment and high throughput screens, enabled the discovery of the first series of potent inhibitors of mitochondrial branched-chain aminotransferase (BCATm) based on a 2-benzylamino-pyrazolo[1,5-a]pyrimidinone-3-carbonitrile template. Structure-guided growth enabled rapid optimization of potency with maintenance of ligand efficiency, while the focus on physicochemical properties delivered compounds with excellent pharmacokinetic exposure that enabled a proof of concept experiment in mice. Oral administration of 2-((4-chloro-2,6-difluorobenzyl)amino)-7-oxo-5-propyl-4,7-dihydropyrazolo[1,5-a]pyrimidine-3-carbonitrile 61 significantly raised the circulating levels of the branched-chain amino acids leucine, isoleucine, and valine in this acute study.


ACS Medicinal Chemistry Letters | 2016

Discovery and Optimization of Potent, Selective, and in Vivo Efficacious 2-Aryl Benzimidazole BCATm Inhibitors

Hongfeng Deng; Jingye Zhou; Flora Sundersingh; Jeffrey A. Messer; Donald O. Somers; Myriam Ajakane; Christopher C. Arico-Muendel; Arthur Beljean; Svetlana L. Belyanskaya; Ryan P. Bingham; Emily Blazensky; Anne-Bénédicte Boullay; Eric Boursier; Jing Chai; Paul S. Carter; Chun-wa Chung; Alain Claude-Marie Daugan; Yun Ding; Kenny Herry; Clare I. Hobbs; Eric Humphries; Christopher S. Kollmann; Van Loc Nguyen; Edwige Nicodeme; Sarah E. Smith; Nerina Dodic; Nicolas Ancellin

To identify BCATm inhibitors suitable for in vivo study, Encoded Library Technology (ELT) was used to affinity screen a 117 million member benzimidazole based DNA encoded library, which identified an inhibitor series with both biochemical and cellular activities. Subsequent SAR studies led to the discovery of a highly potent and selective compound, 1-(3-(5-bromothiophene-2-carboxamido)cyclohexyl)-N-methyl-2-(pyridin-2-yl)-1H-benzo[d]imidazole-5-carboxamide (8b) with much improved PK properties. X-ray structure revealed that 8b binds to the active site of BACTm in a unique mode via multiple H-bond and van der Waals interactions. After oral administration, 8b raised mouse blood levels of all three branched chain amino acids as a consequence of BCATm inhibition.


ACS Medicinal Chemistry Letters | 2013

Identification of a Novel and Selective Series of Itk Inhibitors via a Template-Hopping Strategy.

Catherine Mary Alder; Martin Ambler; Amanda J. Campbell; Aurelie Cecile Champigny; Angela M. Deakin; John D. Harling; Carol A. Harris; Tim Longstaff; Sean Lynn; Aoife C. Maxwell; Chris J. Mooney; Callum Scullion; Onkar M. P. Singh; Ian Edward David Smith; Donald O. Somers; Christopher J. Tame; Gareth Wayne; Caroline Wilson; James Michael Woolven

Inhibition of Itk potentially constitutes a novel, nonsteroidal treatment for asthma and other T-cell mediated diseases. In-house kinase cross-screening resulted in the identification of an aminopyrazole-based series of Itk inhibitors. Initial work on this series highlighted selectivity issues with several other kinases, particularly AurA and AurB. A template-hopping strategy was used to identify a series of aminobenzothiazole Itk inhibitors, which utilized an inherently more selective hinge binding motif. Crystallography and modeling were used to rationalize the observed selectivity. Initial exploration of the SAR around this series identified potent Itk inhibitors in both enzyme and cellular assays.


Journal of Medicinal Chemistry | 2016

Structurally diverse mitochondrial branched chain aminotransferase (BCATm) leads with varying binding modes identified by fragment screening

Jennifer A. Borthwick; Nicolas Ancellin; Sophie M. Bertrand; Ryan P. Bingham; Paul S. Carter; Chun-wa Chung; Ian Churcher; Nerina Dodic; Charlène Fournier; Peter Francis; Andrew Hobbs; Craig Jamieson; Stephen D. Pickett; Sarah E. Smith; Donald O. Somers; Claus Spitzfaden; Colin J. Suckling; Robert J. Young

Inhibitors of mitochondrial branched chain aminotransferase (BCATm), identified using fragment screening, are described. This was carried out using a combination of STD-NMR, thermal melt (Tm), and biochemical assays to identify compounds that bound to BCATm, which were subsequently progressed to X-ray crystallography, where a number of exemplars showed significant diversity in their binding modes. The hits identified were supplemented by searching and screening of additional analogues, which enabled the gathering of further X-ray data where the original hits had not produced liganded structures. The fragment hits were optimized using structure-based design, with some transfer of information between series, which enabled the identification of ligand efficient lead molecules with micromolar levels of inhibition, cellular activity, and good solubility.


Journal of Medicinal Chemistry | 2016

Exploitation of a Novel Binding Pocket in Human Lipoprotein-Associated Phospholipase A2 (Lp-PLA2) Discovered through X-ray Fragment Screening.

Alison Jo-Anne Woolford; Joseph E. Pero; Sridhar Aravapalli; Valerio Berdini; Joseph E. Coyle; Philip J. Day; Andrew M. Dodson; Pascal Grondin; Finn P. Holding; Lydia Y. W. Lee; Peng Li; Eric S. Manas; Joseph P. Marino; Agnes C. L. Martin; Brent W. Mccleland; Rachel McMenamin; Christopher W. Murray; Christopher E. Neipp; Lee W. Page; Vipulkumar Kantibhai Patel; Florent Potvain; Sharna J. Rich; Ralph A. Rivero; Kirsten S. Smith; Donald O. Somers; Lionel Trottet; Ranganadh Velagaleti; Glyn Williams; Ren Xie

Elevated levels of human lipoprotein-associated phospholipase A2 (Lp-PLA2) are associated with cardiovascular disease and dementia. A fragment screen was conducted against Lp-PLA2 in order to identify novel inhibitors. Multiple fragment hits were observed in different regions of the active site, including some hits that bound in a pocket created by movement of a protein side chain (approximately 13 Å from the catalytic residue Ser273). Using structure guided design, we optimized a fragment that bound in this pocket to generate a novel low nanomolar chemotype, which did not interact with the catalytic residues.


ACS Medicinal Chemistry Letters | 2017

Investigation of a Bicyclo[1.1.1]pentane as a Phenyl Replacement within an LpPLA2 Inhibitor.

Nicholas Measom; Kenneth David Down; David J. Hirst; Craig Jamieson; Eric S. Manas; Vipulkumar Kantibhai Patel; Donald O. Somers

We describe the incorporation of a bicyclo[1.1.1]pentane moiety within two known LpPLA2 inhibitors to act as bioisosteric phenyl replacements. An efficient synthesis to the target compounds was enabled with a dichlorocarbene insertion into a bicyclo[1.1.0]butane system being the key transformation. Potency, physicochemical, and X-ray crystallographic data were obtained to compare the known inhibitors to their bioisosteric counterparts, which showed the isostere was well tolerated and positively impacted on the physicochemical profile.


Bioorganic & Medicinal Chemistry Letters | 2018

Discovery of potent and selective Spleen Tyrosine Kinase inhibitors for the topical treatment of inflammatory skin disease

Michael David Barker; John Liddle; Francis Louis Atkinson; David M. Wilson; Marion C. Dickson; Cesar Ramirez-Molina; Huw D. Lewis; Robert P. Davis; Donald O. Somers; Margarete Neu; Emma Jones; Robert John Watson

The discovery and lead optimisation of a novel series of SYK inhibitors is described. These were optimised for SYK potency and selectivity against Aurora B. Compounds were profiled in a human skin penetration study to identify a suitable candidate molecule for pre-clinical development. Compound 44 (GSK2646264) was selected for progression and is currently in Phase I clinical trials.

Collaboration


Dive into the Donald O. Somers's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge