Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Donald T. Miller is active.

Publication


Featured researches published by Donald T. Miller.


Journal of The Optical Society of America A-optics Image Science and Vision | 1997

Supernormal vision and high-resolution retinal imaging through adaptive optics

Junzhong Liang; David R. Williams; Donald T. Miller

Even when corrected with the best spectacles or contact lenses, normal human eyes still suffer from monochromatic aberrations that blur vision when the pupil is large. We have successfully corrected these aberrations using adaptive optics, providing normal eyes with supernormal optical quality. Contrast sensitivity to fine spatial patterns was increased when observers viewed stimuli through adaptive optics. The eyes aberrations also limit the resolution of images of the retina, a limit that has existed since the invention of the ophthalmoscope. We have constructed a fundus camera equipped with adaptive optics that provides unprecedented resolution, allowing the imaging of microscopic structures the size of single cells in the living human retina.


Optics Express | 2005

Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina

Yan Zhang; Jungtae Rha; Ravi S. Jonnal; Donald T. Miller

Although optical coherence tomography (OCT) can axially resolve and detect reflections from individual cells, there are no reports of imaging cells in the living human retina using OCT. To supplement the axial resolution and sensitivity of OCT with the necessary lateral resolution and speed, we developed a novel spectral domain OCT (SD-OCT) camera based on a free-space parallel illumination architecture and equipped with adaptive optics (AO). Conventional flood illumination, also with AO, was integrated into the camera and provided confirmation of the focus position in the retina with an accuracy of +/-10.3 mum. Short bursts of narrow B-scans (100x560 mum) of the living retina were subsequently acquired at 500 Hz during dynamic compensation (up to 14 Hz) that successfully corrected the most significant ocular aberrations across a dilated 6 mm pupil. Camera sensitivity (up to 94 dB) was sufficient for observing reflections from essentially all neural layers of the retina. Signal-to-noise of the detected reflection from the photoreceptor layer was highly sensitive to the level of cular aberrations and defocus with changes of 11.4 and 13.1 dB (single pass) observed when the ocular aberrations (astigmatism, 3rd order and higher) were corrected and when the focus was shifted by 200 mum (0.54 diopters) in the retina, respectively. The 3D resolution of the B-scans (3.0x3.0x5.7 mum) is the highest reported to date in the living human eye and was sufficient to observe the interface between the inner and outer segments of individual photoreceptor cells, resolved in both lateral and axial dimensions. However, high contrast speckle, which is intrinsic to OCT, was present throughout the AO parallel SD-OCT B-scans and obstructed correlating retinal reflections to cell-sized retinal structures.


Optics Express | 2006

High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography

Yan Zhang; Barry Cense; Jungtae Rha; Ravi S. Jonnal; Weihua Gao; Robert J. Zawadzki; John S. Werner; Steve Jones; Scot S. Olivier; Donald T. Miller

We report the first observations of the three-dimensional morphology of cone photoreceptors in the living human retina. Images were acquired with a high-speed adaptive optics (AO) spectral-domain optical coherence tomography (SD-OCT) camera. The AO system consisted of a Shack-Hartmann wavefront sensor and bimorph mirror (AOptix) that measured and corrected the ocular and system aberrations at a closed-loop rate of 12 Hz. The bimorph mirror was positioned between the XY mechanical scanners and the subjects eye. The SD-OCT system consisted of a superluminescent diode and a 512 pixel line scan charge-coupled device (CCD) that acquired 75,000 A-scans/s. This rate is more than two times faster than that previously reported. Retinal motion artifacts were minimized by quickly acquiring small volume images of the retina with and without AO compensation. Camera sensitivity was sufficient to detect reflections from all major retinal layers. The regular distribution of bright spots observed within C-scans at the inner segment / outer segment (IS/OS) junctions and at the posterior tips of the OS were found to be highly correlated with one another and with the expected cone spacing. No correlation was found between the posterior tips of the OS and the other retinal layers examined, including the retinal pigment epithelium.


Vision Research | 1996

Images of cone photoreceptors in the living human eye

Donald T. Miller; David R. Williams; G. Michael Morris; Junzhong Liang

Though the photoreceptor mosaic has been imaged through the intact optics of the eyes of several species, it has not been clear whether individual photoreceptors can be resolved in the living human eye. We have constructed a high-resolution fundus camera and have resolved cones with a spacing as small as 3.5 microns in single images of the fundus. The high contrast of these images implies that almost all the light returning from the retina at this wavelength (555 nm) has passed through the apertures of foveal cones. The average power spectra of our retinal images show that it is possible to recover spatial frequencies as high as 150 c/deg in eyes with normal optical quality, a conclusion that was confirmed with estimates of the optical quality of these eyes obtained with a Hartmann-Shack wavefront sensor. These results emphasize the superiority of the eyes optics over the spatial sampling limits of the retina when the eyes optical quality is optimized. They also show that it would be possible to routinely resolve retinal structures as small as photoreceptors in the normal living eye if its aberrations could be corrected.


Optics Express | 2008

Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction

Robert J. Zawadzki; Barry Cense; Yan Zhang; Stacey S. Choi; Donald T. Miller; John S. Werner

We have developed an improved adaptive optics - optical coherence tomography (AO-OCT) system and evaluated its performance for in vivo imaging of normal and pathologic retina. The instrument provides unprecedented image quality at the retina with isotropic 3D resolution of 3.5 x 3.5 x 3.5 microm(3). Critical to the instruments resolution is a customized achromatizing lens that corrects for the eyes longitudinal chromatic aberration and an ultra broadband light source (Delta lambda=112 nm lambda(0)= approximately 836 nm). The eyes transverse chromatic aberrations is modeled and predicted to be sufficiently small for the imaging conditions considered. The achromatizing lens was strategically placed at the light input of the AO-OCT sample arm. This location simplifies use of the achromatizing lens and allows straightforward implementation into existing OCT systems. Lateral resolution was achieved with an AO system that cascades two wavefront correctors, a large stroke bimorph deformable mirror (DM) and a micro-electromechanical system (MEMS) DM with a high number of actuators. This combination yielded diffraction-limited imaging in the eyes examined. An added benefit of the broadband light source is the reduction of speckle size in the axial dimension. Additionally, speckle contrast was reduced by averaging multiple B-scans of the same proximal patch of retina. The combination of improved micron-scale 3D resolution, and reduced speckle size and contrast were found to significantly improve visibility of microscopic structures in the retina.


Optics Express | 2006

Adaptive optics flood-illumination camera for high speed retinal imaging.

Jungtae Rha; Ravi S. Jonnal; Karen E. Thorn; Junle Qu; Yan Zhang; Donald T. Miller

Current adaptive optics flood-illumination retina cameras operate at low frame rates, acquiring retinal images below seven Hz, which restricts their research and clinical utility. Here we investigate a novel bench top flood-illumination camera that achieves significantly higher frame rates using strobing fiber-coupled superluminescent and laser diodes in conjunction with a scientific-grade CCD. Source strength was sufficient to obviate frame averaging, even for exposures as short as 1/3 msec. Continuous frame rates of 10, 30, and 60 Hz were achieved for imaging 1.8,0.8, and 0.4 deg retinal patches, respectively. Short-burst imaging up to 500 Hz was also achieved by temporarily storing sequences of images on the CCD. High frame rates, short exposure durations (1 msec), and correction of the most significant aberrations of the eye were found necessary for individuating retinal blood cells and directly measuring cellular flow in capillaries. Cone videos of dark adapted eyes showed a surprisingly rapid fluctuation (~1 Hz) in the reflectance of single cones. As further demonstration of the value of the camera, we evaluated the tradeoff between exposure duration and image blur associated with retina motion.


Optics Express | 2008

Measuring retinal contributions to the optical Stiles-Crawford effect with optical coherence tomography

Weihua Gao; Barry Cense; Yan Zhang; Ravi S. Jonnal; Donald T. Miller

The directional component of the retinal reflection, i.e., the optical Stiles-Crawford effect (SCE), is well established to result from the waveguiding property of photoreceptors. Considerable uncertainty, however, remains as to which retinal reflections are waveguided and thus contribute. To this end we have developed a retina camera based on spectral-domain optical coherence tomography (SD-OCT) that axially resolves (approximately 5 microm) these reflections and permits a direct investigation of the SCE origin at near infrared wavelengths. Reflections from the photoreceptor inner/outer segments junction (IS/OS) and near the posterior tip of the outer segments (PTOS) were found highly sensitive to beam entry position in the pupil with a considerable decrease in brightness occurring with an increase in aperture eccentricity. Reflections from the retinal pigment epithelium (RPE) were largely insensitive. The average directionality (rho(oct) value) at 2 degree eccentricity across the four subjects for the IS/OS, PTOS, and RPE were 0.120, 0.270, and 0.016 mm(-2), respectively. The directionality for the IS/OS approached typical psychophysical SCE measurements, while that for the PTOS approached conventional optical SCE measurements. Precise measurement of the optical SCE was found to require significant A-scan averaging.


Biomedical Optics Express | 2011

Imaging cone photoreceptors in three dimensions and in time using ultrahigh resolution optical coherence tomography with adaptive optics

Omer P. Kocaoglu; Sangyeol Lee; Ravi S. Jonnal; Qiang Wang; Ashley E. Herde; Jack C. Derby; Weihua Gao; Donald T. Miller

Cone photoreceptors in the living human eye have recently been imaged with micron-scale resolution in all three spatial dimensions using adaptive optics optical coherence tomography. While these advances have allowed non-invasive study of the three-dimensional structure of living human cones, studies of their function and physiology are still hampered by the difficulties to monitor the same cells over time. The purpose of this study is to demonstrate the feasibility of cone monitoring using ultrahigh-resolution adaptive optics optical coherence tomography. Critical to this is incorporation of a high speed CMOS camera (125 KHz) and a novel feature-based, image registration/dewarping algorithm for reducing the deleterious effects of eye motion on volume images. Volume movies were acquired on three healthy subjects at retinal eccentricities from 0.5° to 6°. Image registration/dewarping reduced motion artifacts in the movies from 15 μm to 1.3 μm root mean square, the latter sufficient for identifying and tracking cones. Cone row-to-row spacing and outer segment lengths were consistent with that reported in the literature. Cone length analysis demonstrates that UHR-AO-OCT is sufficiently sensitive to measure real length differences between cones in the same 0.5° retinal patch, and requires no more than five measurements of OS length to achieve 95% confidence. We know of no other imaging modality that can monitor foveal or parafoveal cones over time with comparable resolution in all three dimensions.


Journal of Biomedical Optics | 2005

Optical coherence tomography speckle reduction by a partially spatially coherent source

Jeehyun Kim; Donald T. Miller; Eunha K. Kim; Sanghoon Oh; Junghwan Oh; Thomas E. Milner

Speckle in optical coherence tomography (OCT) images originates in the high spatial coherence of incident light that enables interference of light backscattered from spatially heterogenous tissue specimens. We report results of a numerical simulation and an experiment to test speckle reduction using a partially spatially coherent source. A Gaussian-Schell model for a partially spatially coherent source is used in the OCT simulation. For the experiment, such a source was generated by a spatially coherent boardband light source and a multimode fiber. The advantage of using a multimode fiber in combination with a broadband source is the large number of photons per coherence volume. To illustrate speckle reduction with a partially spatially coherent source, we record low-coherence interferograms of a scattering surface using single-mode and multimode source fibers. Interferograms recorded using a single-mode source fiber are indicative of those observed using conventional OCT. Speckle in OCT images recorded using a multimode source fiber is substantially reduced.


Optics Express | 2009

Volumetric retinal imaging with ultrahigh-resolution spectral-domain optical coherence tomography and adaptive optics using two broadband light sources

Barry Cense; Eric Koperda; Jeffrey M. Brown; Omer P. Kocaoglu; Weihua Gao; Ravi S. Jonnal; Donald T. Miller

Ultrabroadband sources, such as multiplexed superluminescent diodes (SLDs) and femtosecond lasers, have been successfully employed in adaptive optics optical coherence tomography (AO-OCT) systems for ultrahigh resolution retinal imaging. The large cost differential of these sources, however, motivates the need for a performance comparison. Here, we compare the performance of a Femtolasers Integral Ti:Sapphire laser and a Superlum BroadLighter T840, using the same AO-OCT system and the same subject. In addition, we investigate the capability of our instrument equipped with the Integral to capture volume images of the fovea and adjacent regions on a second subject using the AO to control focus in the retina and custom and freeware image registration software to reduce eye motion artifacts. Monochromatic ocular aberrations were corrected with a woofer-tweeter AO system. Coherence lengths of the Integral and BroadLighter were measured in vivo at 3.2 microm and 3.3 microm, respectively. The difference in dynamic range was 5 dB, close to the expected variability of the experiment. Individual cone photoreceptors, retinal capillaries and nerve fiber bundles were distinguished in all three dimensions with both sources. The acquired retinal volumes are provided for viewing in OSA ISP, allowing the reader to data mine at the microscope level.

Collaboration


Dive into the Donald T. Miller's collaboration.

Top Co-Authors

Avatar

Ravi S. Jonnal

University of California

View shared research outputs
Top Co-Authors

Avatar

Omer P. Kocaoglu

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar

Weihua Gao

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar

Barry Cense

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar

Zhuolin Liu

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar

Qiang Wang

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar

Jungtae Rha

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sangyeol Lee

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge