Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhuolin Liu is active.

Publication


Featured researches published by Zhuolin Liu.


Biomedical Optics Express | 2014

Adaptive optics optical coherence tomography at 1 MHz

Omer P. Kocaoglu; Timothy L. Turner; Zhuolin Liu; Donald T. Miller

Image acquisition speed of optical coherence tomography (OCT) remains a fundamental barrier that limits its scientific and clinical utility. Here we demonstrate a novel multi-camera adaptive optics (AO-)OCT system for ophthalmologic use that operates at 1 million A-lines/s at a wavelength of 790 nm with 5.3 μm axial resolution in retinal tissue. Central to the spectral-domain design is a novel detection channel based on four high-speed spectrometers that receive light sequentially from a 1 × 4 optical switch assembly. Absence of moving parts enables ultra-fast (50ns) and precise switching with low insertion loss (-0.18 dB per channel). This manner of control makes use of all available light in the detection channel and avoids camera dead-time, both critical for imaging at high speeds. Additional benefit in signal-to-noise accrues from the larger numerical aperture afforded by the use of AO and yields retinal images of comparable dynamic range to that of clinical OCT. We validated system performance by a series of experiments that included imaging in both model and human eyes. We demonstrated the performance of our MHz AO-OCT system to capture detailed images of individual retinal nerve fiber bundles and cone photoreceptors. This is the fastest ophthalmic OCT system we know of in the 700 to 915 nm spectral band.


Biomedical Optics Express | 2014

Adaptive optics optical coherence tomography with dynamic retinal tracking

Omer P. Kocaoglu; R. Daniel Ferguson; Ravi S. Jonnal; Zhuolin Liu; Qiang Wang; Daniel X. Hammer; Donald T. Miller

Adaptive optics optical coherence tomography (AO-OCT) is a highly sensitive and noninvasive method for three dimensional imaging of the microscopic retina. Like all in vivo retinal imaging techniques, however, it suffers the effects of involuntary eye movements that occur even under normal fixation. In this study we investigated dynamic retinal tracking to measure and correct eye motion at KHz rates for AO-OCT imaging. A customized retina tracking module was integrated into the sample arm of the 2nd-generation Indiana AO-OCT system and images were acquired on three subjects. Analyses were developed based on temporal amplitude and spatial power spectra in conjunction with strip-wise registration to independently measure AO-OCT tracking performance. After optimization of the tracker parameters, the system was found to correct eye movements up to 100 Hz and reduce residual motion to 10 µm root mean square. Between session precision was 33 µm. Performance was limited by tracker-generated noise at high temporal frequencies.


Biomedical Optics Express | 2013

In-the-plane design of an off-axis ophthalmic adaptive optics system using toroidal mirrors

Zhuolin Liu; Omer P. Kocaoglu; Donald T. Miller

Adaptive optics (AO) ophthalmoscopes have garnered increased clinical and scientific use for imaging the microscopic retina. Unlike conventional ophthalmoscopes, however, AO systems are commonly designed with spherical mirrors that must be used off-axis. This arrangement causes astigmatism to accumulate at the retina and pupil conjugate planes, degrading AO performance. To mitigate this effect and more fully tap the benefit of AO, we investigated a novel solution based on toroidal mirrors. Derived 2(nd) order analytic solutions along with commercial ray tracing predict performance benefit of toroidal mirrors for ophthalmoscopic use. For the Indiana AO ophthalmoscope, a minimum of three toroids is required to achieve performance criteria for retinal image quality, beam displacement, and beam ellipticity. Measurements with fabricated toroids and retinal imaging on subjects substantiate the theoretical predictions. Comparison to off-the-plane method is also presented.


Investigative Ophthalmology & Visual Science | 2016

A Review of Adaptive Optics Optical Coherence Tomography: Technical Advances, Scientific Applications, and the Future

Ravi S. Jonnal; Omer P. Kocaoglu; Robert J. Zawadzki; Zhuolin Liu; Donald T. Miller; John S. Werner

Purpose Optical coherence tomography (OCT) has enabled “virtual biopsy” of the living human retina, revolutionizing both basic retina research and clinical practice over the past 25 years. For most of those years, in parallel, adaptive optics (AO) has been used to improve the transverse resolution of ophthalmoscopes to foster in vivo study of the retina at the microscopic level. Here, we review work done over the last 15 years to combine the microscopic transverse resolution of AO with the microscopic axial resolution of OCT, building AO-OCT systems with the highest three-dimensional resolution of any existing retinal imaging modality. Methods We surveyed the literature to identify the most influential antecedent work, important milestones in the development of AO-OCT technology, its applications that have yielded new knowledge, research areas into which it may productively expand, and nascent applications that have the potential to grow. Results Initial efforts focused on demonstrating three-dimensional resolution. Since then, many improvements have been made in resolution and speed, as well as other enhancements of acquisition and postprocessing techniques. Progress on these fronts has produced numerous discoveries about the anatomy, function, and optical properties of the retina. Conclusions Adaptive optics OCT continues to evolve technically and to contribute to our basic and clinical knowledge of the retina. Due to its capacity to reveal cellular and microscopic detail invisible to clinical OCT systems, it is an ideal companion to those instruments and has the demonstrable potential to produce images that can guide the interpretation of clinical findings.


Investigative Ophthalmology & Visual Science | 2016

3D Imaging of Retinal Pigment Epithelial Cells in the Living Human Retina.

Zhuolin Liu; Omer P. Kocaoglu; Donald T. Miller

Purpose Dysfunction of the retinal pigment epithelium (RPE) underlies numerous retinal pathologies, but biomarkers sensitive to RPE change at the cellular level are limited. In this study, we used adaptive optics optical coherence tomography (AO-OCT) in conjunction with organelle motility as a novel contrast mechanism to visualize RPE cells and characterize their 3-dimensional (3D) reflectance profile. Methods Using the Indiana AO-OCT imaging system (λc = 790 nm), volumes were acquired in the macula of six normal subjects (25–61 years). Volumes were registered in 3D with subcellular accuracy, layers segmented, and RPE and photoreceptor en face images extracted and averaged. Voronoi and two-dimensional (2D) power spectra analyses were applied to the images to quantify RPE and cone packing and cone-to-RPE ratio. Results Adaptive optics OCT revealed two distinct reflectance patterns at the depth of the RPE. One is characterized by the RPE interface with rod photoreceptor tips, the second by the RPE cell nuclei and surrounding organelles, likely melanin. Increasing cell contrast by averaging proved critical for observing the RPE cell mosaic, successful in all subjects and retinal eccentricities imaged. Retinal pigment epithelium mosaic packing and cell thickness generally agreed with that of histology and in vivo studies using other imaging modalities. Conclusions We have presented, to our knowledge, the first detailed characterization of the 3D reflectance profile of individual RPE cells and their relation to cones and rods in the living human retina. Success in younger and older eyes establishes a path for testing aging effects in larger populations. Because the technology is based on OCT, our measurements will aid in interpreting clinical OCT images.


Biomedical Optics Express | 2015

Modal content of living human cone photoreceptors

Zhuolin Liu; Omer P. Kocaoglu; Timothy L. Turner; Donald T. Miller

Decades of experimental and theoretical investigations have established that photoreceptors capture light based on the principles of optical waveguiding. Yet considerable uncertainty remains, even for the most basic prediction as to whether photoreceptors support more than a single waveguide mode. To test for modal behavior in human cone photoreceptors in the near infrared, we took advantage of adaptive-optics optical coherence tomography (AO-OCT, λc = 785 nm) to noninvasively image in three dimensions the reflectance profile of cones. Modal content of reflections generated at the cone inner segment and outer segment junction (IS/OS) and cone outer segment tip (COST) was examined over a range of cone diameters in 1,802 cones from 0.6° to 10° retinal eccentricity. Second moment analysis in conjunction with theoretical predictions indicate cone IS and OS have optical properties consistent of waveguides, which depend on segment diameter and refractive index. Cone IS was found to support a single mode near the fovea (≤3°) and multiple modes further away (>4°). In contrast, no evidence of multiple modes was found in the cone OSs. The IS/OS and COST reflections share a common optical aperture, are most circular near the fovea, show no orientation preference, and are temporally stable. We tested mode predictions of a conventional step-index fiber model and found that in order to fit our AO-OCT results required a lower estimate of the IS refractive index and introduction of an IS focusing/tapering effect.


Biomedical Optics Express | 2016

Photoreceptor disc shedding in the living human eye

Omer P. Kocaoglu; Zhuolin Liu; Furu Zhang; Kazuhiro Kurokawa; Ravi S. Jonnal; Donald T. Miller

Cone photoreceptors undergo a daily cycle of renewal and shedding of membranous discs in their outer segments (OS), the portion responsible for light capture. These physiological processes are fundamental to maintaining photoreceptor health, and their dysfunction is associated with numerous retinal diseases. While both processes have been extensively studied in animal models and postmortem eyes, little is known about them in the living eye, in particular human. In this study, we report discovery of the optical signature associated with disc shedding using a method based on adaptive optics optical coherence tomography (AO-OCT) in conjunction with post-processing methods to track and monitor individual cone cells in 4D. The optical signature of disc shedding is characterized by an abrupt transient loss in the cone outer segment tip (COST) reflection followed by its return that is axially displaced anteriorly. Using this signature, we measured the temporal and spatial properties of shedding events in three normal subjects. Average duration of the shedding event was 8.8 ± 13.4 minutes, and average length loss of the OS was 2.1 μm (7.0% of OS length). Prevalence of cone shedding was highest in the morning (14.3%) followed by the afternoon (5.7%) and evening (4.0%), with load distributed across the imaged patch. To the best of our knowledge these are the first images of photoreceptor disc shedding in the living retina.


Biomedical Optics Express | 2017

Adaptive optics optical coherence tomography angiography for morphometric analysis of choriocapillaris [Invited]

Kazuhiro Kurokawa; Zhuolin Liu; Donald T. Miller

Histological studies have shown that morphometric changes at the microscopic level of choriocapillaris (CC) occur with aging and disease onset, and therefore may be sensitive biomarkers of outer retinal health. However, visualizing CC at this level in the living human eye is challenging because its microvascular is tightly interconnected and weakly reflecting. In this study, we address these challenges by developing and validating a method based on adaptive optics optical coherence tomography with angiography (AO-OCTA) that provides the necessary 3D resolution and image contrast to visualize and quantify these microscopic details. The complex network of anastomotic CC capillaries was successfully imaged in nine healthy subjects (26 to 68 years of age) and at seven retinal eccentricities across the macula. Using these images, four fundamental morphometric parameters of CC were characterized: retinal pigment epithelium-to-CC depth separation (17.5 ± 2.1 µm), capillary diameter (17.4 ± 2.3 µm), normalized capillary density (0.53 ± 0.08), and capillary length per unit area (50.4 ± 9.5 mm-1). AO-OCTA results were consistent with histologic studies and, unlike OCTA, showed clear delineation of CC capillaries, a requirement for measuring three of the four morphometric parameters. Success in younger and older eyes establishes a path for testing aging and disease effects in larger populations. To the best of our knowledge, this is the first quantitative morphometry of choriocapillaris at the level of individual capillaries in the living human retina.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Imaging and quantifying ganglion cells and other transparent neurons in the living human retina

Zhuolin Liu; Kazuhiro Kurokawa; Furu Zhang; John Jaehwan Lee; Donald T. Miller

Significance Ganglion cells are the primary building block of retinal neural circuitry, but have been elusive to observe and quantify in the living human eye. Here, we show a light microscopy modality that reveals not only the somas of these cells, but also their 3D packing geometry, primary subtypes, and spatial projection to other neurons. The method provides a glimpse of the rich tapestry of neurons, glia, and blood vessels that compose the retina, thus exposing the anatomical substrate for neural processing of visual information. Clinically, high-resolution images of retinal neurons in living eyes hold promise for improved diagnosis and assessing treatment of ganglion cell and other neuron loss in retinal disease. Ganglion cells (GCs) are fundamental to retinal neural circuitry, processing photoreceptor signals for transmission to the brain via their axons. However, much remains unknown about their role in vision and their vulnerability to disease leading to blindness. A major bottleneck has been our inability to observe GCs and their degeneration in the living human eye. Despite two decades of development of optical technologies to image cells in the living human retina, GCs remain elusive due to their high optical translucency. Failure of conventional imaging—using predominately singly scattered light—to reveal GCs has led to a focus on multiply-scattered, fluorescence, two-photon, and phase imaging techniques to enhance GC contrast. Here, we show that singly scattered light actually carries substantial information that reveals GC somas, axons, and other retinal neurons and permits their quantitative analysis. We perform morphometry on GC layer somas, including projection of GCs onto photoreceptors and identification of the primary GC subtypes, even beneath nerve fibers. We obtained singly scattered images by: (i) marrying adaptive optics to optical coherence tomography to avoid optical blurring of the eye; (ii) performing 3D subcellular image registration to avoid motion blur; and (iii) using organelle motility inside somas as an intrinsic contrast agent. Moreover, through-focus imaging offers the potential to spatially map individual GCs to underlying amacrine, bipolar, horizontal, photoreceptor, and retinal pigment epithelium cells, thus exposing the anatomical substrate for neural processing of visual information. This imaging modality is also a tool for improving clinical diagnosis and assessing treatment of retinal disease.


Proceedings of SPIE | 2017

Characterizing motility dynamics in human RPE cells

Zhuolin Liu; Kazuhiro Kurokawa; Furu Zhang; Donald T. Miller

Retinal pigment epithelium (RPE) cells are vital to health of the outer retina, however, are often compromised in ageing and ocular diseases that lead to blindness. Early manifestation of RPE disruption occurs at the cellular level, but while in vivo biomarkers at this scale hold considerable promise, RPE cells have proven extremely challenging to image in the living human eye. Recently we addressed this problem by using organelle motility as a novel contrast agent to enhance the RPE cell in conjunction with 3D resolution of adaptive optics-optical coherence tomography (AO-OCT) to section the RPE layer. In this study, we expand on the central novelty of our method – organelle motility – by characterizing the dynamics of the motility in individual RPE cells, important because of its direct link to RPE physiology. To do this, AO-OCT videos of the same retinal patch were acquired at approximately 1 min intervals or less, time stamped, and registered in 3D with sub-cellular accuracy. Motility was quantified by an exponential decay time constant, the time for motility to decorrelate the speckle field across an RPE cell. In two normal subjects, we found the decay time constant to be just 3 seconds, thus indicating rapid motility in normal RPE cells.

Collaboration


Dive into the Zhuolin Liu's collaboration.

Top Co-Authors

Avatar

Donald T. Miller

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar

Omer P. Kocaoglu

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qiang Wang

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar

Furu Zhang

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar

Ravi S. Jonnal

University of California

View shared research outputs
Top Co-Authors

Avatar

Timothy L. Turner

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar

Daniel X. Hammer

Center for Devices and Radiological Health

View shared research outputs
Top Co-Authors

Avatar

Anant Agrawal

Center for Devices and Radiological Health

View shared research outputs
Top Co-Authors

Avatar

Ayoub Lassoued

Indiana University Bloomington

View shared research outputs
Researchain Logo
Decentralizing Knowledge