Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Donald T. Moir.
Nature | 1999
Richard A. Alm; Lo-See L. Ling; Donald T. Moir; Benjamin L. King; Eric D. Brown; Peter Doig; Douglas R. Smith; Brian Noonan; Braydon C. Guild; Boudewijn L. deJonge; Gilles Carmel; Peter J. Tummino; Anthony Caruso; Maria Uria-Nickelsen; Debra M. Mills; Cameron Ives; Rene Gibson; David Merberg; Scott D. Mills; Qin Jiang; Diane E. Taylor; Gerald F. Vovis; Trevor J. Trust
Helicobacter pylori, one of the most common bacterial pathogens of humans, colonizes the gastric mucosa, where it appears to persist throughout the hosts life unless the patient is treated. Colonization induces chronic gastric inflammation which can progress to a variety of diseases, ranging in severity from superficial gastritis and peptic ulcer to gastric cancer and mucosal-associated lymphoma. Strain-specific genetic diversity has been proposed to be involved in the organisms ability to cause different diseases or even be beneficial to the infected host, and to participate in the lifelong chronicity of infection. Here we compare the complete genomic sequences of two unrelated H. pylori isolates. This is, to our knowledge, the first such genomic comparison. H. pylori was believed to exhibit a large degree of genomic and allelic diversity, but we find that the overall genomic organization, gene order and predicted proteomes (sets of proteins encoded by the genomes) of the two strains are quite similar. Between 6 to 7% of the genes are specific to each strain, with almost half of these genes being clustered in a single hypervariable region.
Cell | 1989
Hans K. Rudolph; Adam Antebi; Gerald R. Fink; Catherine M. Buckley; Thomas E. Dorman; JoAnn LeVitre; Lance S. Davidow; Jen-I Mao; Donald T. Moir
The genes for two new P-type ATPases, PMR1 and PMR2, have been identified in yeast. A comparison of the deduced sequences of the PMR proteins with other known ion pumps showed that both proteins are very similar to Ca2+ ATPases. PMR1 is identical to SSC1, a gene previously identified by its effect on secretion of some foreign proteins from yeast. Proteins secreted from pmr1 mutants lack the outer chain glycosylation that normally results from passage through the Golgi. Loss of PMR1 function suppresses the lethality of ypt1-1, a mutation that blocks the secretion pathway. These data suggest that PMR1 functions as a Ca2+ pump affecting transit through the secretory pathway.
Journal of Virology | 2011
Arnab Basu; Bing Li; Debra M. Mills; Rekha G. Panchal; Steven C. Cardinale; Michelle M. Butler; Norton P. Peet; Helena Majgier-Baranowska; John D. Williams; Ishan Patel; Donald T. Moir; Sina Bavari; Ranjit Ray; Michael Farzan; Lijun Rong; Terry L. Bowlin
ABSTRACT Ebola virus (EBOV) causes severe hemorrhagic fever, for which therapeutic options are not available. Preventing the entry of EBOV into host cells is an attractive antiviral strategy, which has been validated for HIV by the FDA approval of the anti-HIV drug enfuvirtide. To identify inhibitors of EBOV entry, the EBOV envelope glycoprotein (EBOV-GP) gene was used to generate pseudotype viruses for screening of chemical libraries. A benzodiazepine derivative (compound 7) was identified from a high-throughput screen (HTS) of small-molecule compound libraries utilizing the pseudotype virus. Compound 7 was validated as an inhibitor of infectious EBOV and Marburg virus (MARV) in cell-based assays, with 50% inhibitory concentrations (IC50s) of 10 μM and 12 μM, respectively. Time-of-addition and binding studies suggested that compound 7 binds to EBOV-GP at an early stage during EBOV infection. Preliminary Schrödinger SiteMap calculations, using a published EBOV-GP crystal structure in its prefusion conformation, suggested a hydrophobic pocket at or near the GP1 and GP2 interface as a suitable site for compound 7 binding. This prediction was supported by mutational analysis implying that residues Asn69, Leu70, Leu184, Ile185, Leu186, Lys190, and Lys191 are critical for the binding of compound 7 and its analogs with EBOV-GP. We hypothesize that compound 7 binds to this hydrophobic pocket and as a consequence inhibits EBOV infection of cells, but the details of the mechanism remain to be determined. In summary, we have identified a novel series of benzodiazepine compounds that are suitable for optimization as potential inhibitors of filoviral infection.
Genomics | 1995
Marlena Schoenberg Fejzo; Sung-Joo Yoon; Kate T. Montgomery; Mitchell S. Rein; Stanislawa Weremowicz; Kenneth S. Krauter; Thomas E. Dorman; Jonathan A. Fletcher; Jen-I Mao; Donald T. Moir; Raju Kucherlapati; Cynthia C. Morton
Uterine leiomyomata are the most common tumors in women and can cause abnormal uterine bleeding, pelvic pain, and infertility. Approximately 200,000 hysterectomies are performed annually in the U.S. to relieve patients of the medical sequelae of these benign neoplasms. Our efforts have focused on cloning the t(12;14)(q14-q15;q23-q24) breakpoint in uterine leiomyoma to further our understanding of the biology of these tumors. Thirty-nine YACs and six cosmids mapping to 12q14-q15 have been mapped by fluorescence in situ hybridization to tumor metaphase chromosomes containing a t(12;14). One YAC spanned the translocation breakpoint and was mapped to tumor metaphases from a pulmonary chondroid hamartoma containing a t(12;14)(q14-q15;q23-q24) and a lipoma containing a t(12;15)(q15;q24); this YAC also spanned the breakpoint in these two tumors, suggesting that the same gene on chromosome 12 may be involved in the pathobiology of these distinct benign neoplasms.
Antimicrobial Agents and Chemotherapy | 2004
Lo-See L. Ling; Jun Xian; Syed M. Ali; Bolin Geng; Jun Fan; Debra M. Mills; Anthony C. Arvanites; Hernan Orgueira; Mark A. Ashwell; Gilles Carmel; Yibin Xiang; Donald T. Moir
ABSTRACT Bacterial enoyl-acyl carrier protein reductase (ENR) catalyzes an essential step in fatty acid biosynthesis. ENR is an attractive target for narrow-spectrum antibacterial drug discovery because of its essential role in metabolism and its sequence conservation across many bacterial species. In addition, the bacterial ENR sequence and structural organization are distinctly different from those of mammalian fatty acid biosynthesis enzymes. High-throughput screening to identify inhibitors of Escherichia coli ENR yielded four structurally distinct classes of hits. Several members of one of these, the 2-(alkylthio)-4,6-diphenylpyridine-3-carbonitriles (“thiopyridines”), inhibited both purified ENR (50% inhibitory concentration [IC50] = 3 to 25 μM) and the growth of Staphylococcus aureus and Bacillus subtilis (MIC = 1 to 64 μg/ml). The effect on cell growth is due in part to inhibition of fatty acid biosynthesis as judged by inhibition of incorporation of [14C]acetate into fatty acids and by the increased sensitivity of cells that underexpress an ENR-encoding gene (four- to eightfold MIC shift). Synthesis of a variety of compounds in this chemical series revealed a correlation between IC50 and MIC, and the results provided initial structure-activity relationships. Preliminary structure-activity relationships, potency on purified ENR, and activity on bacterial cells indicate that members of the thiopyridine chemical series are effective fatty acid biosynthesis inhibitors suitable for further antibacterial development.
Journal of Medicinal Chemistry | 2010
Bing Li; Ramdas Pai; Steven C. Cardinale; Michelle M. Butler; Norton P. Peet; Donald T. Moir; Sina Bavari; Terry L. Bowlin
NSC 240898 was previously identified as a botulinum neurotoxin A light chain (BoNT/A LC) endopeptidase inhibitor by screening the National Cancer Institute Open Repository diversity set. Two types of analogues have been synthesized and shown to inhibit BoNT/A LC in a FRET-based enzyme assay, with confirmation in an HPLC-based assay. These two series of compounds have also been evaluated for inhibition of anthrax lethal factor (LF), an unrelated metalloprotease, to examine enzyme specificity of the BoNT/A LC inhibition. The most potent inhibitor against BoNT/A LC in these two series is compound 12 (IC(50) = 2.5 microM, FRET assay), which is 4.4-fold more potent than the lead structure and 11.2-fold more selective for BoNT/A LC versus the anthrax LF metalloproteinase. Structure-activity relationship studies have revealed structural features important to potency and enzyme specificity.
Antimicrobial Agents and Chemotherapy | 2009
Rekha G. Panchal; Ricky L. Ulrich; Douglas Lane; Michelle M. Butler; Timothy J. Opperman; John D. Williams; Norton P. Peet; Donald T. Moir; Tam Luong Nguyen; Rick Gussio; Terry L. Bowlin; Sina Bavari
ABSTRACT Given the limited number of structural classes of clinically available antimicrobial drugs, the discovery of antibacterials with novel chemical scaffolds is an important strategy in the development of effective therapeutics for both naturally occurring and engineered resistant strains of pathogenic bacteria. In this study, several diarylamidine derivatives were evaluated for their ability to protect macrophages from cell death following infection with Bacillus anthracis, a gram-positive spore-forming bacterium. Four bis-(imidazolinylindole) compounds were identified with potent antibacterial activity as measured by the protection of macrophages and by the inhibition of bacterial growth in vitro. These compounds were effective against a broad range of gram-positive and gram-negative bacterial species, including several antibiotic-resistant strains. Minor structural variations among the four compounds correlated with differences in their effects on bacterial macromolecular synthesis and mechanisms of resistance. In vivo studies revealed protection by two of the compounds of mice lethally infected with B. anthracis, Staphylococcus aureus, or Yersinia pestis. Taken together, these results indicate that the bis-(imidazolinylindole) compounds represent a new chemotype for the development of therapeutics for both gram-positive and gram-negative bacterial species as well as against antibiotic-resistant infections.
Methods in Enzymology | 1991
Donald T. Moir; Lance S. Davidow
To summarize, a variety of stable vectors and efficient promoters and secretion signals are available in yeast for engineering the secretion of any protein of interest. Since secretion is growth-associated, we have favored the use of constitutive promoters and moderate copy number integrated vectors. This is because (1) heterologous gene expression from very high copy number vectors is frequently deleterious to growth and (2) delaying gene expression until after the most rapid cell growth phase is cumbersome on a large scale. Methods are available for dividing the total process into growth and production/secretion phases, but they appear worthwhile only when expression of the engineered protein compromises growth significantly. Even with these useful tools, it is frequently helpful to enlist the aid of mutant host strains in order to maximize secretion of a desired protein. Mutations in the PMR1 gene have proved effective in a number of different cases. Moreover, it is possible to identify new host strains tailored to specific needs by applying activity screens to mutagenized colonies growing on petri plates. Finally, colony screens such as the ones described here for active secreted enzymes are useful for routine strain construction. For example, they may be applied to identify the most productive strain from a large number of clones following a transformation or genetic cross. In addition, these screens may be used for characterizing the products of random mutagenesis of the gene encoding the secreted enzyme. The resulting structure-function information can be used to identify regions of the enzyme involved in different activities and to build new enzymes with different characteristics.
Journal of Medicinal Chemistry | 2012
Bing Li; Ramdas Pai; Ming Di; Daniel Aiello; Marjorie H. Barnes; Michelle M. Butler; Tommy F. Tashjian; Norton P. Peet; Terry L. Bowlin; Donald T. Moir
The increasing prevalence of drug-resistant bacterial infections demands the development of new antibacterials that are not subject to existing mechanisms of resistance. Previously, we described coumarin-based inhibitors of an underexploited bacterial target, namely the replicative helicase. Here we report the synthesis and evaluation of optimized coumarin-based inhibitors with 9-18-fold increased potency against Staphylococcus aureus (Sa) and Bacillus anthracis (Ba) helicases. Compounds 20 and 22 provided the best potency, with IC(50) values of 3 and 1 μM, respectively, against the DNA duplex strand-unwinding activities of both B. anthracis and S. aureus helicases without affecting the single strand DNA-stimulated ATPase activity. Selectivity index (SI = CC(50)/MIC) values against S. aureus and B. anthracis for compound 20 were 33 and 66 and for compound 22 were 20 and 40, respectively. In addition, compounds 20 and 22 demonstrated potent antibacterial activity against multiple ciprofloxacin-resistant MRSA strains, with MIC values ranging between 0.5 and 4.2 μg/mL.
Antimicrobial Agents and Chemotherapy | 2009
Timothy J. Opperman; Steven M. Kwasny; John D. Williams; Atiyya R. Khan; Norton P. Peet; Donald T. Moir; Terry L. Bowlin
ABSTRACT Staphylococcus epidermidis and Staphylococcus aureus are the leading causative agents of indwelling medical device infections because of their ability to form biofilms on artificial surfaces. Here we describe the antibiofilm activity of a class of small molecules, the aryl rhodanines, which specifically inhibit biofilm formation of S. aureus, S. epidermidis, Enterococcus faecalis, E. faecium, and E. gallinarum but not the gram-negative species Pseudomonas aeruginosa or Escherichia coli. The aryl rhodanines do not exhibit antibacterial activity against any of the bacterial strains tested and are not cytotoxic against HeLa cells. Preliminary mechanism-of-action studies revealed that the aryl rhodanines specifically inhibit the early stages of biofilm development by preventing attachment of the bacteria to surfaces.
Collaboration
Dive into the Donald T. Moir's collaboration.
United States Army Medical Research Institute of Infectious Diseases
View shared research outputs